
The Software Magazine
$2.50 March 1982 Volume II, No. 10 (ISSN 0279-2575, usps 597-830)

BASIC
Business Functions

An Overview Of CB80

Full Screen Program
Editors: WordMaster

CPMUG Volume 78:
Catalogue and
Abstracts

8080 Assembler
Programming Tutorial
Input-Output
Instructions

Configuration
Parameter Storage
for PL/l-80

The Osborne I
Revisited

A Review of
T/MAKER II — Part 3

JB |i
I
I
I
I
I

Check your interests:

I Profit Planning
I Cash Management

Acquisition Analysis .
j Market Simulation
| Resource Allocation
; Lease vs. Purchase

Analysis
[Purchase Price Trends
j Balance Sheet
; Projection
I Cost Center Budgeting
I Productivity Trend
I Analysis
! Sales Projection and
j Analysis
I Marketing Strategy
| Development
I Capital Project
I Evaluation
I Headcount Analysis
j and Control
I Cost and Variance
| Analysis

R&D Project Evaluation
I Energy Accounting

Cost Estimating
Consolidations

| Tax Planning
I
I

Please send more information
about PLAN80

i Please send a Software
Desk Reference™

Dealer, Distributor, and OEM
i inquiries invited
i Please note: All Lifeboat Associates

microcomputer software requires
i SB-80™ or other CP/M-80® com-
[patible operating system.
1 And soon versions will be available
i for IBM Personal Computer DOS
[(SB-86,™ MS-DOS™), and other
i systems as well.

NAME

I
I _______________________________________

j TITLE
I
I

j COMPANY
I
I

I STREET

I
I ---
I CITY STATE ZIP

j For More Information, contact

LIFEBOAT
ASSOCIATES

i 1651 Third Avenue
j New York, New York 10028

Tel: (212)860-0300
I TWX: 710-581-2524 (LBSOFT NYK)

Telex: 640693 (LBSOFT NYK)

WHY
PLAN
80?

PLAN80™ is a new system that takes the big
business, big computer approach to computer
modeling and adapts it to smaller computers,
which are inherently more friendly and responsive.

If you are not already familiar with the world of
financial modeling you will soon wonder how you
managed without a system like PLAN80. If you
are familiar with the art you will find it incredible
that a microcomputer can do so much of
what has previously been the domain of million
dollar machines.

PLAN80 WILL DO 99% OF THE JOBS DONE BY
COMPUTER MODELING SYSTEMS COSTING $50,000

SB-80, SB-86 and Software Desk Reference are trademarks of Lifeboat Associates
PLAN80 is a trademark of Business Planning Systems. MS-DOS is a trademark of Microsoft, Inc.
CP/M-80 is a trademark of of Digital Research, Inc. Copyright © 1982, by Lifeboat Associates

JO
The Software Magazine
March 1982 Volume II, No. 10

Editor-in-Chief: Edward H. Currie
Managing Editor: Jane Mellin
Administrative Assistant: Patricia Matthews
Production Assistant: K. Gartner
Typographer: Harold Black Cover by K. Gartner

Contents The CP/M™ Users Group
CPMUG™ Volume 78,

Catalogue 22
. . . And Abstracts 23

Ordering From CPMUG 24

Software Notes
Tips and Techniques 21
dBASE II, Version 2.3

Reported by Michael Olfe 33
Bugs and Patches

FABS™, FABS II™ and BASIC-80™
by Bill Norris 47

Macros of the Month
Edited by Michael Olfe 49

Product Status Reports
New Products 50
New Versions 51
Operating Systems 53
Hard Disk Modules 53
Bugs 53
Version List 54

Opinion
Editorial Comments

by Edward H. Currie 2
The Pipeline

by Carl Warren 3
Letters 46
Zoso 48

Features
Full Screen Program Editors: WordMaster™

by Ward Christensen 5
More on dBASE II™

by Van Court Hare 10
The Osborne I Computer, Revisited

by Kelly Smith 16
Configuration Parameter Storage for PL/l-80™

by Michael J. Karas 25
Assembler Programming Tutorial:

Input/Output Instructions
by Ward Christensen 28

Full ASCII Keyboard for Apple CP/M®
by Matthew Von-Maszewski 30

WordStar™ Modifications for the Epson MX-100 Printer
by Bob Kowitt 34

A Review of T/MAKER II™ — Part 3
Tablemaking with T/MAKER

by Raymond Sonoff 37
BASIC Business Functions

by James E. Korenthal 39
An Overview of CB80™

by Bill Burton 42

Miscellaneous

A Call For Manuscripts 14
Gift Subscriptions 15
Kibits™ 15
STOP 24
Change of Address 41
Notice 47
T/MAKER Users Group 45
Attention Dealers! 53

Copyright © 1982, by Lifelines Publishing Corporation. No portion of this publication may be
reproduced without the written permission of the publisher. The single issue price is $2.50 for
copies sent to destinations in the U.S., Canada, or Mexico. The single issue price for copies sent
to all other countries is $3.60. All checks should be made payable to Lifelines Publishing Cor-
poration. Foreign checks must be in U.S. dollars, drawn on a U.S. bank; checks, money orders,
VISA, and MasterCard are acceptable. All orders must be pre-paid. Please send all cor-
respondence to the Publisher at the below address.

Lifelines is a trademark of Lifelines Publishing Corp. The Software Magazine is a trademark of
Lifelines Publishing Corp.
SB-80 and SB-86 are trademarks of Lifeboat Associates.
BASIC-80 is a trademark of Microsoft, Inc.
CB80 is a trademark of Compiler Systems.
CP/M and CP/M-80 are registered trademarks of Digital Research, Inc. PL/l-80 is a trademark of
Digital Research, Inc.
The CP/M Users Group is not affiliated with Digital Research, Inc.
dBASE II is a trademark of Ashton-Tate
FABS and FABS II are trademarks of Computer Control Corp.
PMATE is a trademark of Phoenix Software Associates, Ltd.
KIBITS is a trademark of Bess Garber and Seton Kasmir.
T/MAKER II is a trademark of Peter Roizen.
WordMaster and WordStar are trademarks of MicroPro International Corp.
Z80 is a trademark of Zilog Corporation.

Lifelines (ISSN 0279-2575, USPS 597-830) is pub-
lished monthly at a subscription price of $18 for twelve
issues, when destined for the U.S., Canada, or Mexico,
$40 when destined for any other country. Second-
class postage paid at New York, New York. POST-
MASTER, please send changes of address to Lifelines
Publishing Corporation, 1651 Third Ave., New York,
N.Y. 10028.

Editorial Comments
There Are More Things in Heaven and
Earth Horatio ...

The trade publications are showing a
gratifying interest in our pursuit of
standards. As a result of Lifelines' call
for standards many of the leaders in
our industry are now actively engaged
in discussions regarding standards for
the micro industry; and operating sys-
tems are at the top of their lists.

A number of you have requested some
discussion of the language Ada, which
has recently been adopted by the De-
partment of Defense as a standard.
This interesting language was designed
with three primary goals in mind: effi-
ciency, reliability and ease of mainte-
nance, along with recognition that pro-
grams are prepared by programmers.
Readability was emphasized over ease
of writing. For example, program vari-
ables must be explicitly declared and
their type specified with a specific pro-
hibition against automatic type con-
version. This guarantees that objects
are used only as intended. English-like
constructs are used throughout to facil-
itate readability. Particular emphasis
was placed on keeping the language as
small as possible.

Ada has many of the constructs found
in languages such as Euclid, Lis, Mesa,
Modula and Sue; these are Pascal de-
rivatives. Ada is truly the product of a
language design engineering project
and is thought by many to represent the
state of the art in languages.

The design of Ada was also influenced
by ALGOL 68 and Simula, as well as
Alphard and Clu - but not to the extent
of the Pascal derivatives.

An Ada program consists of a sequence
of higher level program units, each of
which may be separately compiled.
Such program units may in fact be sub-
programs defining executable algo-
rithms, so-called package modules de-
fining collections of objects, or task
modules defining concurrent computa-
tions.

CP/M-80 compatible versions are al-
ready emerging and should prove of
great interest to Pascal lovers. Take a
look at the recent series of articles in
Microsystems on Little-Ada by Ralph
Kenyon. He has provided a run time in-
terpreter and source code and will in
the final installment present the com-

piler and object code.

Not everyone is enthusiastic about this
new entry, however. In a recent issue of
an English technical publication an
author suggested that there was genu-
ine cause for concern about the imple-
mentation of Ada by the Department
of Defense. The author's concern is that
this new language is being used to pro-
gram nuclear warhead missiles. He sug-
gests that a language as new and as
complex as Ada is potentially quite
dangerous and not really the sort of
software to be used for programming
nuclear weapons. This could be the
source of the final indignation by man-
kind resulting from the manifestation
of the "ultimate bug".

The field of ham radio has undergone
drastic changes in recent years with the
advent of the microcomputer; unfortu-
nately, though some had predicted
rapid expansion of this amateur hobby
it appears to be in fact contracting at an
alarming rate. Apparently many hams
have abandoned their former hobby
and moved into the limitless realm of
micros. The FCC has, as usual, been
slow to react to this and has only
recently done anything which would
attract computerists into this area. Un-
fortunately, their efforts may be too lit-
tle and too late. ASCII transmission at
three hundred baud seems a pathetic
concession, particularly when the
Morse code requirements remain. We
can only hope that the FCC will move
rapidly in removing these archaic bar-
riers to those who would breathe new
life into this historically important avo-
cation. If they will lift the code require-
ments and permit 4800 or 9600 baud
transmission there is a good chance
that a whole new area of amateur radio
could emerge analogous to that of its
telecommunications counterpart, i.e.
CBBSs. Those concerned that the air-
waves not be turned into another CB-
land could be reassured by perhaps
additional written examination re-
quirements to filter out those who are
more amused by abuse than by respon-
sible exploitation. Imagine being able
to tune into the broadcasts of the entire
CPMUG library at 9600 baud. Pro-
grams could be prepared for your
computer that would wait for the ap-
propriate codes to be received and
then begin writing the volume(s) to
disk. Satellite communications would
also be of interest to those around the
globe looking for low cost, high speed

program transmission.

Those of you concerned with this
problem should make your feelings
known to the FCC.

It's interesting to contemplate what
area of hobbyist activity will follow
microcomputers. It's rather difficult to
imagine what technology could sur-
pass the microcomputer. If you have
any ideas in this area please let me
know and we'll review them in a
future editorial.

The interest in SB-86 (a.k.a. MSDOS)
is continuing to grow rapidly and we
are gratified by the response of the
readership, which has been very sup-
portive of editorials discussing the
various aspects of this most important
entry into the area of microcomputer
operating systems. There is now a CP/
Emulator which is a program designed
to run under MSDOS to permit
CP/M-86 programs to not only run
under MSDOS but to run faster . . . and
the beat goes on ...

The CBBSs are now offering their
standard fare in a "crunched format
which saves you about 20-40 percent
in ASCII file size, an important con-
sideration if it's your nickel that the
transmission is being played on. These
guys seem to have no end of innova-
tion to bring to the game. So the next
time that you dial in, watch for a cou-
ple of files called SQ.COM and
USQ.COM. They will save you a bun-
dle. The basic technique is to crunch
all those spaces which seem to make
up a surprisingly significant portion of
ASCII files. Once you have received
the file you have only to use
USQ.COM and presto, it's unscram-
bled!

It will be interesting how long it will
take for the first 8086/8088 based
CBBS to appear (running SB-86 of
course). With the ease with which all
the communications programs can be
translated and reassembled it won't be
long.

A number of you have asked about
STOIC, which was mentioned in a
previous editorial. Wink Saville has a
later version which he might be per-
suaded to make available if enough of
you are interested.

Keep sending those cards and letters,
folks ...

Edward H. Currie
Lifelines, March 19822

The Pipeline Carl Warren

vices. What I did find were a number
of articles discussing some devices,
but nothing giving an overall look.
But more on this later.

Since I had one of my major research
problems partially solved, with the
aid of secretary Brenda and The Index,
I now was looking for something simi-
lar for hardware. As luck would have
it (and I can assure you editors rely on
luck) I was talking to Bill Godbout and
mentioned that it would be nice if
someone had put together a compen-
dium of hardware manuals on various
equipment.

It turned out Bill had done just that
with his products, spanning from 1975
to September of 1981. The books
called Product User Manuals Vol 1
and 2 cover the S-100 products pro-
duced by Godbout Electronics over
this time frame. Vol 1, priced at $20,

(continued on next page)

to the task. Her first order of business
was putting everything in order, a task
that I have found to be perplexing.
Next, to assist me in finding where
which article appeared, she sprung for
a $14.95 copy of "The Index" by W.H.
Wallace, indexor. This book is pub-
lished by Missouri Indexing Inc, Box
301, St. Ann, MO 63074 (314)
997-6470 and contains over 30,000 en-
tries encompassing 6 years of articles
and editorials which have appeared in
more than 800 issues of personal com-
puter magazines - including most of
my own writings.

The book has already paid for itself.
Unfortunately, I now have to come up
with the fame and fortune that I prom-
ised.

Since I'm embarking on a unique set of
articles for this column, I used The In-
dex to find out if anyone had ever con-
sidered publishing a guide to I/O de-

Resources aplenty and a low cost net-
work

One of the most difficult tasks I have
as a trade journalist is keeping track of
the mounds of information I need to
perform my job. Some of this infor-
mation comes from other magazines,
especially when I'm researching a
story on a product segment, or devel-
oping a reference list.

In the past I, like you, have had to dig
through my ever-growing mound of
magazines to find out which articles
were printed where and how they
went about presenting the material. I
have even gone to all the trouble of
promising my secretary great wealth
and fame if she could bring some sem-
blance of order to this mountain of
mayhem.

As could be expected from any in-
trepid secretary she was more than up

PART FROM THE REST!

w

A FULL LINE OF 100% DUTY CYCLE PRINTERS

SLG
132

SL250
132

SL300
132

SL160
132

SL125MODEL
COLUMNS:
THROUGHPUT: (Ipm)

20 Char/line
40 Char/line
80 Char/line

132 Char/line
DUTY CYCLE (%)
HEAD WARRANTY
GRAPHICS:
RS 232:
FRICTION FEED:
TRACTOR FEED:
PINFEED:

□
ML83A
132

ML84
132

ML82A
80

ML80
80 132

266
184
114

74
100

232
138

76
47

100100
— 200 million characters —

232
138

76

86
51
28

400
100

250
100

300
100

160
100

— 500 million characters —

125
100100

Opt. Opt. Opt. Opt.Std. Std. Opt. Opt.Opt.

Opt.Opt.

0 os RlBUTEDbyGR A YDON-SHERMAN, INC
(212) 289-3199 (201) 467-1401 TWX #710-983-4375 (GRAYDON MAWD)

Lifelines, Volume II, Number 10 3

covers the famous Econoram series to
the CPU-Z and includes full user infor-
mation with schematics, timing dia-
grams, and, where necessary, soft-
ware. Vol 2, priced at $25, goes the
next step and even covers the dual
8085/88 processor board that has
found so much favor among software
developers. With the series beginning
next month Ill be drawing heavily
from this two volume set; so you
might give Bill a call at (415) 562-0636.

A very low cost network server

You have probably noticed that the
watch-word for the year is network-
ing. The concept isn't new, but many
of the implementation schemes are.
Already the much-touted Ethernet has
been overshadowed by less expensive,
and in many cases more capable de-
signs.

Interestingly, most of the schemes
developed so far require a host adap-
tor, a transmission box of some sort,
more expense, and very specialized
software. The data rates run from a
low of 56K bytes/sec to 10M bytes/sec
in very expensive Ethernet implemen-
tations.

I've found, however, that very few ap-
plications require transmission rates
above 19.2K baud, and that the inci-
dence of collision is relatively low.
Moreover, most users aren't planning
to wire up a 55 story building, nor do
they want to be concerned over the
characteristics of transmission lines.

What most potential network users
want above anything else is low cost.
And they are willing to make some
tradeoffs to get the desired price/per-
formance.

Some of the tradeoffs that have to be
made are in the area of speed. The old
axiom of "as the speed goes up so does
the price" holds very true in network-
ing systems. In addition, response
time must be considered. What has to
be determined is: do you really need
instant access all the time? More than
likely in an office with a dozen or so
micros lashed together the answer is
no.

Apparently, Radio Shack has come to
the same conclusions as I have. And I
congratulate them on their far-sight-
edness. Radio Shack is offering the
Network III for $599.

The Network III is a software con-
trolled switch for multiplex 16-RS
232C serial channels operating at
19.2K baud. This means that for about
$37.43 per connection, you can com-
bine 16 micros, terminals, and printers
for a very low-cost networking
scheme.

As sold, the Network III comes with
software designed to work with
TRS-80 Model Ills. But you aren't re-
stricted to the Radio Shack equip-
ment. You can use any device you like
and any processor; the only require-
ment is an RS-232 Port and the correct
software.

The software used is designed to poll
each device in turn to see if it is vying
for the network or can accept a mes-
sage, or is planning to send a message
to another unit on the system, like the
master who also serves as the file
server, or a printer.

Collisions are avoided in the network
by pulling Data Terminal Ready
(DTR) low, on all but the active chan-
nels, and coupling the two talking and
listening devices together. When
transmission is finished, the master
then brings DTR high on all the de-
vices, enabling them to talk to the net-
work.

Since a polling scheme is used, priority
is based on which device is connected
to what channel, and you can develop
software that interleaves the polled
channels so that devices which will
have the greatest activity will be
polled first and always have priority
over the others, even instigating a
pseudo interrupt to cause a network
grant.

The one unfortunate thing about the
Radio Shack implementation is that it
requires one device to handle all the
work of the system. But not to fear, a
more stand-alone device is on the
way, from an Orange County, CA-
based design firm.

Reportedly, this device will use a
built-in microprocessor, have RAM
buffering, and will handle all polling
and message switching tasks. From
what we understand, the device will
accept control codes to perform spe-
cific tasks, much like several intelli-
gent modems do now.

The device is under development now

with an expected introduction some-
time in late summer, for a price tag
below $400. Yes we know who the
manufacturer is, and for now they
have asked that that piece of informa-
tion not be disclosed. And no, it isn't a
Japanese firm.

The software piracy business

Like networking, software piracy has
been getting a fair share of attention in
the press lately. And has generated
many possible methods of locking
software up from unwanted stealing.

One of the best methods to prevent
stealing was suggested by San Fran-
cisco based consultant Jim Edlin. He
believes, and I agree, that possibly
software is overpriced in the first
place. Consequently, it becomes easy
for a group to pool their money, buy
one copy and spread it around. Their
conscience is clear after all. They all
contributed - didn't they?

What they did do is lower the revenues
of some coder who spent hundreds of
hours developing the package, only to
lose in the long run. What if the pack-
age was priced at $100 instead of $400?
Possibly that same group would pool
their money to buy many copies rather
than just one - and of course everyone
would be happy.

Two methods that I've heard bantered
around a great deal are: first, remove
all copyrights, lower the price and en-
courage copying; second, form a trade
group made up of software publishers
to force computer makers to provide a
special hardware enhancement that
provides a combination hardware/
software lock. This way a piece of
software must be specifically coded to
that unique device to operate.

Both are intriguing ideas. Both are
workable. Both would change the eco-
nomic picture for software designers
drastically. Personally I think the first
is the most acceptable but is the most
unworkable in realistic terms. The sec-
ond is also acceptable but would add
another unwanted price onto micros
when the name of the game is lower
price tags. The answer for now is that
no one has one.

Something I ran across

Lately my friend Pat McMullen and I
(continued on page 48)

Lifelines, March 19824

Full Screen Program Editors:
WordMaster Ward Christensen

configurable, I have figured out how
to do it, and for a "hacker", it is not
very difficult. I'll tell how, near the
end of this review.

EASY TO LEARN: The command
mode is very straightforward. If you
have worked with ED, it will be a
snap.

Video mode is quite easy to learn. The
"keyboard picture" in the manual lets
you visualize how it has been organiz-
ed: the left hand controls all the file,
screen, and cursor movement, while
the right hand does the more
"obscure" functions — line delete, in-
sert toggle, repeat, show menu, etc.
An exception is control-T, a left-hand
key for deleting the word to the right
of the cursor.

MicroPro was very thoughtful in
allowing two of the most common
cursor movement keys (cursor left and
cursor right) to be done by either
hand. Control-S or control-H may be
used to move the cursor left, and
control-D or control-L to move the
cursor right.

Objective Criteria
Video Related Criteria

FULL SCREEN: There are keys to
move the cursor one line up or down,
one character left or right, one word
left or right.

Another key moves the cursor to the
top of the page, or if already there, to
the bottom. Yet another key moves to
the front of the current line, or if
already there, to the end. I like this
"economizing" as it doesn't take four
keys to perform the functions two can
do.

The repeat key (see below) may be
used to extend these functions.

SCROLLING: There are keys to scroll
one line or the entire screen, up or
down. The repeat key (see below) may
be used to extend these functions, To
go to the top or bottom of the file

(continued next page)

using WordMaster, I have certainly
found nothing annoying about it.

It is comfortable to use, and doesn't
make your fingers perform unnatural
acts. The presence of the control-J help
key aids both the learner, and the user
who doesn't use it frequently enough
to remember all the commands.

MicroPro is to be congratulated for
choosing to make the command mode
an extension of that of ED. Only the
following minor changes were made:
(1) control-N is used to represent "car-
riage return linefeed" (CR/LF) in find
and substitute commands, where ED
used control-L; (2) ESC may be used to
separate strings, where ED used
control-Z; (WM still allows control-Z
for compatibility); (3) The rather
powerful, but seldom used ED "J"
(Juxtaposition) command was not
implemented.

CONFIGURABILITY: WordMaster
comes with configuration files for the
ADM3A (and its look-alikes, the
Soroc IQ/120 and the IMSAI VIO),
for the Haze l t i ne 1500, the
SOL/VDM, and the Beehive 150.

WordMaster, as shipped, supports the
ADM. Modifying it for one of the
other supported terminals requires do-
ing an assembly, and using DDT or
SID to install the patches.

Configuration for other terminals is
accomplished by editing one of the
supplied 8080 ASM files, and using
ASM and DDT (or SID) to make the
patches.

The keyboard for WordMaster is not
configurable. You have to be satisfied
with what they have given you.

Older versions (such as my old 1.02)
used the "right hand" for cursor move-
ment — control H, J, K, and L being
used for cursor back, down, up, and
right. Newer versions use "left hand"
cursor, keys, to be compatible with
WordStar.

Although the WM is not keyboard

WordMaster was my first full screen
editor. I have been using it for over
three years. I therefore tend to use it as
the ruler by which I measure other
editors. I will try to forget my slightly
biased attachment to it. I'll frequently
refer to it below as "WM".

This evaluation is based on WM ver-
sion 1.07, to which I recently upgrad-
ed, from my three-and-a-half year old
version 1.02. The $25 upgrade includ-
ed a new disk and a replacement
manual.

Evaluation

DOCUMENTATION: Includes a 56
page documentation and installation
manual, and a 28 page operator's
guide.

It introduces the three operating
modes: (1) video, (2) command, and
(3) insert. Editing concepts are
covered adequately for the novice. I
found the one-page summary of com-
mands, and a similar page of video
mode control keys to be a handy refer-
ence.

WM is unique in having an on-screen
HELP facility, activated by pressing
control-J. It offers all the "memory
jogger" help you would need to avoid
looking back at the documentation.

The operator's manual features step-
by-step learning, with exercises. The
manual includes a very helpful "visual
picture" keyboard layout, labeled
with the video mode key functions.

SPEED: WordMaster is very fast. In
command mode, it beats all the rest.
Video mode is quite fast, but doesn't
suppqrt terminal hardware line insert
and delete. Part of the speed is due to
the simple, straightforward display
mode: no status line, just text. The
bo t tom two lines are unused,
presumably so that when you escape
to command mode, the screen doesn't
scroll.

ERGONOMICS: In several years of

Lifelines, Volume II, Number 10

four repeats. It works with all keys:
cursor movement, scrolling, deleting,
etc. It also works with character keys,
so to generate an "arrow" like re-
quires hitting control-®, " = ", and
" > ". To put a line of sixty-four dashes
in a file requires only hitting con-
trol-® three times, then pressing
then return.
(Ed: This doesn't work on all terminals.)

TEXT EDITING ABILITIES: WM has
very few special abilities oriented
toward text. It does have word tab for-
ward or backward, and word delete
forward or backward.

No "word wrap" or "fill" mode is sup-
ported. However, like any editor
which has command characters, you
can key in some primitive text format-
ting commands.

An example: suppose you have keyed
in some text, edited it, and now would
like to try to make the right margin a
bit more even.
A command string of:

ms?N$ $0172c-s TNvz

will, one by one, combine two lines,
then cut them off at the nearest space
preceding column 72.

This bears some explanation. It's not
the kind of macro you would likely
think of until you had spent some time
with WM, but is an example of the
flexibility offered by a good command
language. Because spaces are difficult
to show in p4nt, I'll put "—" in the fol-
lowing example, to mean a space. In
actually executing the macro, you'd
have to use a real space, not "—".

m Macro: over and over
sTN$ Search for CR/LF
—$ Change it to a space
OL Move to front of line
72c Move ahead 72 chars.
-s —$ Reverse search space
?N$ Change it to CR/LF
v Go back to video mode
z "Sleep" when exiting

video mode, for 1 sec.

That is all pretty straightforward, ex-
cept perhaps for the "vz". That is a
trick I learned. When WM encounters
a "v" in a command string, it switches
from command mode to video mode,
and temporarily suspends the com-
mand execution. When you eventu-
ally press ESC to return to command
mode, the command continues.

requires hitting "a lot" of screen up or
down keys, or exiting to WM com-
mand mode, and typing a command.
For example, to go to the top of the
file, hit "ESC b v return". The ESC es-
capes from video mode to command
mode. The "b" goes to the beginning
of the file, and the "v" puts you back in
video mode, and return ends the com-
mand.

WordMaster supports full bi-direc-
tional file scrolling. You can proceed
from the top to the bottom and back,
of the the largest file, without a worry
(as long as you have enough disk
space). If you just go forward from the
top to the bottom of a big file, you will
only require twice the file size on disk.
Full scrolling requires the "reverse
scrolling" file to be created, which
takes one file's worth of space, minus
the memory buffer size.

If you are tight on disk space, it is not
possible to confine yourself to not us-
ing the backwards-scrolling file, un-
less you simply avoid scrolling back.
You may scroll back a little, but can
"stop" when you hear the disk access,
and thus avoid using very much disk
space. The "H" command may be used
to position to the front of the file,
while using a minimum of disk space.
The backup file is, however, overwrit-
ten.

INSERT: WM uses a key, control-O,
to "toggle" into or back out of insert
mode. In insert mode, all characters
insert, including return.

OVERTYPE: In non-insert mode, all
character keys you press, including
tab, "overtype" what is under the cur-
sor. Only carriage return doesn't over-
type, instead taking you to the front of
the next line. You can't actually over-
type a carriage return, but may use
control-N to force a new line without
having to go into insert mode.

UNDO-KEY. WordMaster simply
doesn't have one. If you accidentally
press control-K which erases to the
end of the current line, your only op-
tion is re-key in what was lost, or to
quit the edit.

REPEAT: In video mode, a very
handy "repeat" key applies. Pressing
control-® causes WM to treat the next
key-press as if you had typed it four
times. This also applies to control-®
itself, allowing four, sixteen, or sixty-

At some point, you would like to stop
the command from executing. Press-
ing control-C will stop it, but at times
you might not be quick enough, and
the macro will appear to "run away".

The "z" command tells WM to "sleep"
for a second. This second gives you
ample time to press control-C, which
WM will check for upon "waking up"
from the sleep. This provides a very
clean exit from a macro, at the cost of
taking an extra second for each line
processed.

Alternatively, you could put a specific
number corresponding to the number
of lines in a paragraph, in front of the
"m". However, there are tradeoffs:
while this will now quickly process the
paragraph, you will have to type the
entire command in again for the next
paragraph.

Command Related Criteria

MOVE: You may move to the top or
bottom of the file (via "B" or "-B"),
ahead or back by character (via "C" or
"-C"), or line (via "L" or "-L"). In addi-
tion, "OL" moves to the front of the
current line. A positive or negative
number may precede the command,
or a to indicate 65535.

Giving just a positive or negative
number, with no command letter,
moves that many lines, and types the
line moved to.

WM may also move and display a full
screen at a time in command mode, us-
ing the "P" (page) command. "P"
moves down one full screen, and types
the next screen. "OP" displays the cur-
rent screen and doesn't move. "-P"
moves back a page, and displays it.

DELETE: WM may delete characters
(via "D") or lines (via "K" — meaning
kill). A positive or negative number
may precede the command, which in-
dicates the direction and number of
characters or lines to delete. ap-
plies: "#K" will kill all the remaining
lines in the document.

INSERT: Arbitrary character strings
may be inserted. The "I" command in-
serts the characters following it, up to
a terminating ESC or control-Z.

Also, an arbitrary control character
may be inserted into a file, by typing

Lifelines, March 19826

where "$" means ESC. Taking this
apart, it means:

m "Macro": over and over
sfoo$ search for foo
zot$ replace with zot
Ot type line to the left of

the cursor
t type line to the right of

the cursor

"spacing" character (space, tab, new
line).

CHANGE: The change command is
similar to the FIND command, in that
it has both short and long variations,
and may be done either ahead or back.
"S" (substitute) is the "short" change
command, and "R" (replace) is the
"long" change command.

"n!" where "n" is a decimal number.

TYPE: The "T" command types from
the cursor to the end of the line. "OT"
types from the beginning of the line to
the cursor. Thus, "OTT" types the en-
tire cursor line, without moving the
cursor. An alternative, "OLT" moves
to the front of the line, and types it.

A number preceding the "T" indicates
how many lines to type. The file posi-
tioning is not changed, i.e. "9T" types
9 lines, but leaves you positioned to
the first one shown.

"T" supplies one of the ways of deter-
mining how many lines might be
needed for a K (line kill) or W (file
write) command.

For example, suppose you want to
write some exact part of the file to
another file. Since the "W" command
requires a line count, you might
"150T" and see how far that goes. If
you see it went 4 lines too far, you can
then "146Wfilename" to write out the
selected block.

As was mentioned above under
"MOVE", the "P" command may be
used to type one page. "OP" types one
screen from the cursor. "P" moves
down one screen and types the next.

The contents of the scratchpad, men-
tioned below under MOVE and
COPY, may be typed, using a "QT"
command.

FIND: WM can find a string "short" or
"long". Use a "short" find (command
letter "F") if you know that what you
are looking for is not too far away. It
will look at least 2,000 characters
ahead, but won't pursue reading in
more of the file if that is not enough.

A "long" find ("N", for "next") will
continue to search until it finds the
character string, or reaches the bot-
tom of the file. You can interrupt out
of the search if you feel it is going too
far.

Either find may be done forward or
backward. An optional number be-
fore the "F" or "N" specifies finding the
"nth" occurrence.

Additionally, certain special charac-
ters are allowed, to "match any char-
acter", or "match any character except
a specific one", or to match a

Lifelines, Volume II, Number 10

The format is to type the command
letter (S or R), then the string to search
for, then a delimiter (either ESC, or
control-Z), then the text to be substi-
tuted, again followed by a delimiter.
(Typing "OTT" following that, will
show the line after the change, with-
out having to go into video mode)

MOVE and COPY: WordMaster has a
second buffer, which it calls a scratch-
pad. It is accessed via "Q" commands.

There are commands to put "n" lines
in: "nQP", to get the scratchpad back
"n" times: "nQG", and to append "n"
lines to the scratchpad: "n/QP".

This allows moving text by putting it
to the scratchpad (nQP), then moving
somewhere else and getting it (QG).

COPY is performed simply by putting
lines in the scratchpad, then getting
them back into their original position,
before positioning to where the lines
are to be copied. No facility exists for
tagging blocks — you have to use a
line count.

The space for the scratchpad is man-
aged automatically, and does not take
away from the editing space if it is not
used.

Large copies may be done using a
scratch disk file. See READ and
WRITE below.

COMMAND STRINGS: The above
command may be combined into flexi-
ble "little programs".

You can repeat an entire string by
starting it with "M" for "macro", or
with a number, then "M", to repeat
that many times.

An example: To scan the file, chang-
ing every "foo" to "zot", and then type
the line containing the change, type:

msfoozot0tt

Additionally, nesting may be per-
formed, using "angle brackets"
(greater than and less than signs). For
example, to insert 12 rows of 60 dashes
in a file, you type:

12<60<i-$>iTN$>

TN means a carriage return, linefeed
combination. Taking this one apart, it
means:

12 < repeat 12 times
60 < repeat 60 times
i-$ insert
> end of 60 repeat string
iTN$ insert final CR/LF
> end of 12 repeat string

MULTIPLE EDITS: WordMaster is
not explicitly capable of editing multi-
ple files in one edit session. However,
if the files to edit are small enough to
fit in memory, and you don't need
backups, there is a way. I use this tech-
nique to maintain the message files on
CBBS.

First, execute WM with a "dummy"
filename:

WMFOO

WM will say it is a new file, and put
you in video mode. Just ESC to com-
mand mode, and "Yank" (discussed
under READ below) in what you want
to edit:

YMESSAGE.X64

Then, do your normal full screen and
command editing, but when you are
done, don't "E" (end) but rather just
write the file back:

B#WMESSAGE.X64

"B" gets you to the top of the file, and
#W writes the rest of the file (i.e. all of
it) to "MESSAGE.X64". Crude, but it
works.

(continued next page)

File Related Criteria

BACKUP: WordMaster acts like ED,
in that it creates a temporary file for
output. When you end, using the "E"
command, WM renames your original
file to ".BAK", and renames the new
file to the original file's name.

WM may be invoked, specifying a sec-
ond drive on which to place the new
output file. This may be done when
both the file and the backup won't fit
on one disk.

SAVE: There is no explicit SAVE com-
mand in WM, but the "H" command,
to move to the "head" of the file,
writes out what you have done to the
temporary file, erases the original in-
put file, renames the output file to the
input file name, and creates a new
temporary file. (Takes longer to tell
about than it takes to execute!)

This process is identical to, but much
faster than, ending edit and then going
back into WM.

QUIT: WM has two ways to quit: The
"O" (original) command keeps you in
WM, but tosses any (presumably
wrong) changes you have made. The
"Q" (quit) command erases the tempo-
rary output file, and returns to CP/M,
having left the input file unchanged
(unless you had executed "H" com-
mands — see SAVE above).

READ: ED has the ability to bring in
only .LIB files. WordMaster extends
the file read ability to any file on any
disk. A "Y" (yank) command specifies
the name of the file to be read. If the
file type is not specified, ".LIB" is the
default. There is no provision for in-
cluding only part of the file.

WRITE: WordMaster can write an ar-
bitrary number of lines to any file.
When you wish to write the entire re-
mainder of the file to some other file,
"#Wfilename" may be used. However,
if the number of lines is quite large, but
doesn't go to the end of the file, you
will have to go through some pains to
determine the number of lines, as I
mentioned under "TYPE" above.

DIRECTORY: WordMaster has no
abilities to access the directory,
change disks, or erase files.

Statistics

WordMaster retails for $150. It takes

only 10K of memory, leaving quite a
lot free for your program. It is avail-
able in standard, as well as 4200H off-
set CP/M versions for TRS-80 and
H-89.

If I were to recommend changes, I'd
suggest that MicroPro add: (1)
marked blocks for move, copy, delete,
and write; and (2) support for hard-
ware line insert and delete.

A Hacker's Guide to
Configuring the Keyboard

If it is important to you to customize
the key layout, WordMaster is not for
you, unless you are a "hacker" —
someone willing to "dink around"
with ASM and DDT.

Although not documented, the struc-
ture of WordMaster lends itself to
"hack" keyboard customization.

There are two areas in the .COM file
that have to be changed.

The first is a "priority" table, and gives
some of the characteristics of various
keys, such as whether the action it
produces is preemptable.

The second is a table of subroutine ad-
dresses, which handle each control
key.

Both tables are organized in ASCII
order, with control-® first, then
control-A, control-B, and so on,
through control-Z, and the several
control keys after control-Z.

To customize your keyboard, you
have to find the priority table entry,
and subroutine address, for a particu-
lar key, then rearrange the table en-
tries to the new location correspond-
ing to the control key you have as-
signed for the function.

The first table contains one-byte en-
tries. They have values of 0, 1, 5, 8,
20H, 30H, 40H, or 80H. For example,
80H means the action produced is pre-
emptable. The second table contains
subroutine addresses, i.e. are two-
byte entries.

Here are the addresses of the tables,
for the two versions of WM which I
have purchased:

Version: 1.02 1.07
Priority: 102DH 10D6H
Addresses: 111CH 11C5H

A Minor Bug

I must say, that my version 1.02 of
Lifelines, March 1982

Room for Improvement

WordMaster has no serious faults. Al-
though still "leading the pack" in raw
performance, it is getting a bit
"dated", lacking some of the more
"modern" characteristics: (1) terminal
customization without having to use
ASM and DDT; (2) a wider selection
of terminals; (3) customizable key-
board; (4) "UNDO" key to allow you
to correct minor boo-boos; (5) block
marking to facilitate move, copy, de-
lete and file writing; (6) support for
terminal line insert and delete; (7) sup-
port for (perhaps somewhat archaic)
memory mapped terminals; (8) sup-
port for some terminals multi-key-
stroke function keys, i.e. keys which
send in "ESC-such-and- such" .
(NOTE: the H-89 version does sup-
port some of its function keys quite
nicely).

A comment on the lack of line in-
sert /delete hardware support: With-
out it, WM must re-draw the entire
screen when you scroll backward.
However, it implements a "preempt
scheme", which means that typing a
command which would fur ther
change the display, preempts the pre-
vious command. Thus, pressing
"scroll back" several times, or using a
terminal repeat key, interrupts scroll-
ing. When you finally release the key,
the screen makes its final update.

There is no special support for mem-
ory mapped terminals, and therefore
not the "blinding speed" which
PMATE, for example, exhibits on
memory mapped terminals. It is there-
fore necessary to support your mem-
ory mapped board as some kind of ter-
minal, preferably an ADM-3, which
will save you having to customize
WordMaster.

Recommendations

WordMaster is still a good compro-
mise between speed, size, and func-
tion. It is advantageous being only
10K, as you can edit quite a large file
with no extra disk paging.

hind" the cursor, is pushed against the
front of memory, right behind the edi-
tor. The part of the file that is after the
cursor, is pushed back against high
memory. Thus, as much memory as
possible is open, ready to accept your
input.

You can visualize what happens when
you issue a command to move, either
in command or video mode: the
amount you move and the direction
determine how the data is pulled from
either "inner end" of the file.

Lets take a simple example: a "C"
command. "C" moves one character
forward.

WM or ED just takes one character
from the part of the file at the end of
memory, and moves it to the end of
the part of the file that is in the front of
memory. A more simple editor with
all the data packed at the front of
memory, would be more efficient in
that it would only move a pointer, and
not any data.

However, the big "win" comes in
when repetitively doing things that
change the size of the file, such as
changing all occurrences of multiple
spaces, into a single space.

The command string would search for
two spaces, and replace it with one,
then move back one character. The
"back up one character" means the
command string will delete ALL re-
dundant spaces. Without the backup,
the macro would change 10 consecu-
tive spaces to 5, not to 1.

On a 24K file, WM executed this
macro in 15 seconds. MINCE, not
having true command string ability,
could handle the changing of two
spaces into one, but couldn't then
back up one character each time, so I
didn't time it. PMATE and VEDIT ap-
parently don't use the same techniques
as WordMaster, since neither got even
half-way through the file, in the three
minutes I allowed them to run before
interrupting them.

This is a worst-case example, and
doesn't truly reflect the capabilities of
the other editors. It surely should not
be considered to be a criterion for se-
lecting or rejecting any.

CONCLUSIONS

WordMaster's speed, compact size,

and bug-free performance allow me to
unhesitatingly recommend it to any-
one looking for a reasonably priced,
full screen, program editor.

However, this is only the first of four
editors reviewed, so why not wait and
see how the others stack up against
WordMaster.

WordMaster was completely bug free.

The version 1.07, which I have not yet
had time to use very much, has a very
minor bug, specifically in the priority
table mentioned above.

MicroPro missed setting the preempt
bit, for the control-W scroll up key,
probably when they changed WM
from the 'right hand" version, to the
"left hand" version.

Thus, in version 1.02, if you pressed
control-E (scroll up) several times, the
display would quickly catch up to
you. In version 1.07, the scroll-up
key, control-W, scrolls over and over
and over, once for each key press,
rather than preempting. It eventually
catches up to you, so there is no "in-
tegrity" problem.

I have just informed MicroPro of this
bug, and presented a fix: simply patch
address 10EDH from 00 to 80H.

"Beneath the Covers"

Are you curious what makes WM
tick? ...or even ED?

This data is not relevant to the review,
but gives a bit of insight into the prod-
ucts.

Important to their speed is the way in
which the data is kept in memory.

If you or I were to sit down and invent
an editor, we might be inclined to just
put all the data "down low" in mem-
ory, then, when doing something with
the file, move the data as necessary.

For example, to insert a character, just
"slide" memory down to make room
for it.

Digital Research, with ED, and Micro-
Pro, with WordMaster, were much
smarter than that.

They consider the cursor location to
be very important. After all, if you are
going to go into insert mode, the cur-
sor position is where the new data will
be placed. Similarly, a file read, or in
WM, a scratchpad GET, will go in at
the cursor position.

So, they treat the file like a file of 3x5
cards, opening it up at the place of in-
sert. The part of the file that is "be

NEXT MONTH, I'll continue the re-
views with the very delightful editor,
MINCE, from "Mark of the Unicorn".
It is as different from WordMaster, as
night and day, yet exhibits some
rather remarkable capabilities. They
are not without some cost, though:
MINCE is about three times as large as
WordMaster, and requires a special
"work file". In some ways, it is slower,
and in others, faster than WM.

In future reviews, I'll discuss Compu-
View's VEDIT, Lifeboat's PMATE,
and for that matter, any other ap-
propriate program editors that fall in-
to this class.

Since I have WordStar, I'll also com-
ment on it briefly — not a complete
review.

Vedit and PMATE are fundamentally
similar to WordMaster, yet are quite
unique entities.

The final wrapup part of the review
will more thoroughly compare and
contrast the editors.

I encourage your feedback.

Lifelines, Volume II, Number 10 9

More On dBASE II Van Court Hare

Some further detective work on
dBASE II reveals added clues to its in-
ternal operation, plus non-trapped
"out of range" error conditions which
can bomb dBASE II and CP/M. The
following discussion provides the in-
formation needed to avoid problems
and covers in turn: (1) variables (2)
functions (3) the macros defined by &,
and (4) several gaps and lapses in the
dBASE II Manual and system.

dBASE II Variables

First, dBASE II uses variables of three
distinct types (character, numeric,
and logical) which may be stored in
three distinct places (the Primary USE
file, the Secondary USE file, and as
'Memory" variables). Consequently,
nine variable identification categories
must be kept in mind, and any confu-
sion of these may lead to error mes-
sages or incorrect results. dBASE per-
mits the same variable name to be used
in each of the three locations; that is,
different variables with the same
name, say X, may be in the Primary
USE file, in the Secondary USE file,
and also in the Memory variable area.
The necessary distinction is by loca-
tion, but the user is well advised to use
different names for clarity, or to use a
letter prefix to tag the distinction and
avoid mixups. (Employ P.var for Pri-
mary, S.var for Secondary and Mvar
[no period] for Memory variables, as
suggested in the dBASE manual. The
prefixes "P." and "S." have special
meaning; the prefix 'M" is optional.

File Field Variables

The exact name, type, and size of vari-
ables defined for USE files comes from
the initial CREATE command, and ac-
cordingly little confusion occurs for
variables so defined. USE file vari-
ables may be checked at any time with
the DISPLAY STRUCTURE com-
mand for the file in USE. Variables
defined by CREATE always reside in
fixed-length fields, and dBASE II al-
ways works with such fixed length
fields within fixed-length records in

every data base (.DBF) file. This rigid,
fixed format structure must never be
disturbed unwittingly by a program or
an entire database will be lost.
Changes in file structure (MODIFY
STRUCTURE, COPY, APPEND)
must be done with extreme care and
with backup for security. The current
value of USE file field variables
changes with the file record number in
use. File structure for a given USE file
is normally invariant unless purpose-
fully altered by the user.

CAUTION: The maximum width of
any file field variable is 254 characters
(the maximum string length allowed
by dBASE II), and the maximum total
record size is 1000 characters, which
must contain all record fields (up to 32
maximum). Both CREATE and MOD-
IFY prohibit out of range specifica-
tions and provide clear error mes-
sages. APPEND correctly enforces the
rules. However, duplicate field names
in the same record are not detected by
CREATE or MODIFY. If a record has
two fields with an identical name, a
reference to that name will process
only the first match in the record
structure; all subsequent duplicates
are disregarded as if they did not exist.

The .DBF File Field Structure and
.DBF Record Links

Because relational data bases are in-
herently organized in a fixed length
record and field format for reference
ease and processing speed, the user
with limited disk space will want to
size dBASE Il's field and record
lengths carefully, to avoid excessive
storage of blanks in strings and of in-
significant zeros in numerics. Users
who attempt to process fields or rec-
ords of widely different lengths must
either pay a wasted disk space penalty
or must abbreviate and truncate data
to approach the ideal of tightly packed
fields. Note that the dBASE II Pack
command deletes records, not blanks
(as is the case for this command in
some variable-length, comma-delim-
ited file processing systems). Pre-
planned within-record packing be-

comes the user's responsibility.

The field names used for relational
data base file records form the links
between .DBF files. Consequently, it
is desirable to select field variable
names with some forethought so that
files can be tied together without un-
necessary name conversions. The link
name device can be used to remove the
file constraints stated for dBASE H's
standard file and also to build cross-
reference links between files of differ-
ent subject types.

To expand dBASE II files beyond
stated limits, you can take one of two
actions (or both) in succession. In
what follows, the stated restrictions
for one file remain. The scheme is to
combine files to add more records to
the same file structure, or to add more
file fields to the same record key. The
maximum field width (and maximum
string length) of 254 characters must
always be observed.

1 — To expand the number of
records in a file, use two files with
an identical structure and put one
file in PRIMARY and one file in
SECONDARY. Process the PRI-
MARY file; and, at EOF, SELECT
SECONDARY and continue pro-
cessing. The sequence may be re-
peated and extended by bringing in
one or more additional files with
same structure. Change disks and
RESET as necessary. By this means,
file size limits are effectively re-
moved for files with the same struc-
ture.

2 —To expand record size, link rec-
ords in PRIMARY and SECOND-
ARY files that have different struc-
tures. Consider two cases: a) links
on the same key, and b) links on dif-
ferent keys.

In case a) two files have different
structures, but have a common "key"
field (such as "Part:No") which ap-
pears identically in each file. Each file
is also INDEXed on this key. Again,
place one file in PRIMARY and one in
SECONDARY, employ FIND to get

Lifelines, March 1982io

count which can be held in an eight-bit
byte is 256 (0-255 decimal or 0-FF hex),
the source of this defect probably lies
in an accumulator overflow with no
carry check. This same problem, as il-
lustrated subsequently, arises for out
of bounds substring functions.)

The Size and Type of Memory
Variables

The type, size and content of Memory
variables created directly by one of the
commands STORE, ACCEPT, IN-
PUT, or GET, and not copied from a
.DBF record follow the type and size
of the data provided. STORE Mary'
TO MName yields a four-character
string and STORE 5 to X gives a (two
position) signed numeric with no deci-
mal places. However all Memory vari-
ables - however defined - can be
altered by certain subsequent opera-
tions. As shown in Exhibit A, concate-
nation and blank squash can increase
the size of strings; functions such as
VAL and STR can shift variable and
data type, and the substring function
can shorten string size. The user has
the burden of keeping track of current
Memory variable status so that (1) no
string exceeds 254 characters, (2) total
Memory variable size does not exceed
1535 characters, (3) no mixed type op-
erations occur, and (4) no out of range
reference is ever made to any string
variable, as illustrated subsequently.
This is not a trivial task, but crucial to
success with dBASE II in Version 2.02.
Note in particular the name, size, and
type of both Primary and Secondary
variables can change if you specify dif-
ferent USE files, and Memory vari-
ables change when you use RE-
STORE. Consequently, a command
program which contains successive
USE, SELECT, SAVE and RESTORE
statements requires heightened cau-
tion in variable identification and ap-
plication.

dBASE II Macros

Aside from variable housekeeping,
the required use of macros (the &var
construction) is the major difference
between dBASE and BASIC. Put
briefly, the dBASE II macro acts as a
text-editing preprocessor which sub-
stitutes the data value of a named vari-
able into a program command line be-
fore the line is phrased by the dBASE
interpreter. t .. , . xr (continued next page)

the desired key item in PRIMARY, SE-
LECT SECONDARY and FIND the
same key. You now have sixty-two
potential fields of data joined by the
two common key fields. These fields
may be processed by appropriate
SELECTs to the group of fields
desired. Repeated USE of additional
files which contain the same key field
can continue this expansion; conse-
quently, the number of fields keyed to
the same item is unlimited.

In case b), the procedure is the same as
in a), but instead of a common key,
you USE successive files, of different
structure, linked on different keys. To
illustrate, PRIMARY contains a file
INDEXed on "Part:No" which also
has a field "VendonNo" in its struc-
ture. You FIND a desire part number,
then consult the corresponding ven-
dor number field. Now, if you place in
SECONDARY a file of vendor data
INDEXed on "VendonNo" (a field
which must exist in the SECONDARY
file), you can employ the vendor num-
ber from the PRIMARY file to FIND
the appropriate vendor in SECOND-
ARY. You now have at hand the com-
bined data for the desired part and for
the associated vendor, and may pro-
cess this data as desired (with
SELECTs as needed). As before, the
linking procedure just described may
be extended by USE of further files.
The necessary link to subsequent
fields may be obtained from either the
current PRIMARY or SECONDARY
field, and so on until all the data
desired have been obtained. Data you
wish to capture may be STOREd in the
Memory variable area temporarily, or
processed directly.

Easy linking of the type just described
is an important feature of relational
data bases and of dBASE IPs SELECT,
USE, INDEX, and FIND commands.
To supplement dBASE H's manual,
which omits discussion of file design
except for a few program sets, see S.
Atre's Data Base Structured Tech-
niques (N.Y., Wiley-Interscience,
1980, LC-80-14808, ISBN
0-471-05267-1). The proper design of
file structure and linking mechanisms
for a given application is the user's
responsibility.

words STORE, ACCEPT, INPUT,
GET — are allowed to be of variable
length with a type which may change
as the result of certain program state-
ments.

(This internal flexibility of Memory
variables is an important feature of the
language. Memory variables permit
intermediate storage of data as needed
as well as any desired adjustment of
data type and length which may be re-
quired to match .DBF file structures.)

Unfortunately, the DISPLAY MEM-
ORY command shows neither a vari-
able's length nor its type; only vari-
able name and immediate value ap-
pear. As a result, the user must deduce
Memory variable length and type by
visual check, or by use of one of the
language's functions, such as LEN
(< string >). Consequently, it is not
surprising that most of the confusion
in dBASE II application arises from
improper management of Memory
variables. Memory variables are in no
way altered by the record position of
either the Primary or Secondary USE
files, but only by program statements.

EXTREME CAUTION: The maxi-
mum number of characters allowed
for the data of all memory variables is
1535 characters. To exceed this limit is
fatal. Although a suitable error mes-
sage "OUT OF MEMORY FOR VARI-
ABLES" occurs for this condition, no
recovery is provided, al though
dBASE shows a command level
prompt. RELEASE has no effect. DIS-
PLAY MEMORY will destroy the sys-
tem and require a cold restart.
Moreover, maximum string length of
Memory variables is not checked and
reported if excessive, leading to unex-
pected results. Suppose you have, say,
stringl of 254 characters and string2 of
254 characters; an attempt to STORE
stringl + string2 TO string3 is super-
ficially accepted, but what you get is
stringl truncated to 252 characters in
string3 without an error message
warning. Accordingly, your com-
mand program can roll along wiping
out charac te rs and potent ia l ly
destroying your data base. By all
means test for maximum string length
before big concatenation or blank
squash operations. This is a true
dBASE II bug to guard against.

(Incidentally, in the bug just cited,
note that 254 + 254 = 508, and 508
— 256 = 252. Because the maximum

Memory Variables

dBASE H's Memory variables —
which are defined by the command

Lifelines, Volume II, Number 10 11

The end result desired after macro
substitution is an edited program com-
mand line which looks just like you
had typed it on the console (this inter-
mediate step is internal and invisible
to the user.) Because you are editing
text, the data value used by the macro
must absolutely be of type string to be
consistent with the other character
text on the program line. Any viola-
tion of this rule causes an error
message and halts the program. Fur-
ther, the macro function &, which is
exceedingly powerful and required for
many desired actions, has specifica-
tions which are not sufficiently
documented or illustrated in the
dBASE Manual.

CAUTION: (1) Data used for macro
substitution must be in string form; (2)
The macro cannot exceed the overall
254 characters for string; (3) The
delimiter for a macro &string is (a) a
blank, (b) a carriage return, (c) an
operation, or (d) another ampersand;
and (4) after substitution of data in-
voked by the macro call, the resulting
text construction cannot exceed the
specific restrictions demanded for it
by the dBASE II language. For exam-
ple, variable names constructed by a
macro cannot exceed ten string
characters in length.

'5' + '6' (as text); an error, because
strings cannot be added arithmeti-
cally. Finally, if you STORE "11" TO
R and STORE "39" TO C, then @
&R,&C SAY "*" will display an aster-
isk at physical row 12, column 30 of
your CRT (dBASE II counts from 0,0
for display). Expansions of the last il-
lustration permit animated graphics,
forms rules, bar charts, and similar art
using the dBASE II language, but be
careful with type conversion as you
adjust R and C numerically.

A macro can be used to create sub-
scripted variables and other language
features you may miss. For example,
suppose you have a file with the fields
named Keyl, Key2, Key3 . . . Key9 and
wish to index across these fields
numerically, the equivalent of sub-
scripting. Try this:

STORE 1 TO X
STORE STR(X,1) to Index
DISPLAY ALL FOR Key&Index = "Mary"

which will give all records in the cur-
rent USE file which contain "Mary" in
field Keyl. Numeric adjustment of X
will then select your choice of Key&-
Index, a procedure which may be ex-
tended. (Remember, however, that
after macro substitution, the resulting
variable name cannot exceed ten
characters in length.)

A traditional two-dimensional array
can be created in a USE file by selec-
ting the file column by the method just
described, preceded by a selection of
the row desired using GO TO N,
where N is the row (record) number
desired. In this process, the minimum
row is 1; the maximum is 65535, or the
maximum number of records cur-
rently in the USE file, whichever is
smaller. Accordingly, the BASE of the
array should be considered (1,1), not
(0,0). This approach is slow, but does
permit large arrays to be processed in
the traditional way if desired.

dBASE II keywords are identical or
similar to those of BASIC, it is easy to
conjure up fantasies of what dBASE
should do — instead of what it does in
reality. Heed the following command
program construction rules to gain
dBASE H's intended benefits.

1 — Always take only one action, at
its simplest possible level, on one
line of a dBASE program. Avoid all
complex constructions, particu-
larly nested functions, substitu-
tions in place if functions are used,
and so on.

For example, this Microsoft BASIC-80
statement (which uses functions to in-
crement a string, SCOUNT, by 1)
nests functions and substitutes in
p lace : 100 LET SCOUNT =
STR$(VAL(SCOUNT) + 1). You
may be tempted to translate to dBASE
II as STORE STR(VAL (SCOUNT +
1, 2) to SCOUNT to get the same
result. The attempt will fail (as
discussed later), because STR does not
like substitution in place. To get the
des i r ed r e su l t , say i nc remen t
SCOUNT from '9' to TO', do this:

STORE '9' to SCOUNT
STORE VAL(SCOUNT) + 1 to SCOUNT
STORE STR(COUNT, 2) to SCOUNT

2 —Write dBASE II program lines
so they exactly match the syntax
form shown in Part II of the dBASE
II manual, — without deviation of
any kind. If in doubt, duplicate the
exact form of the manual example
which follows the syntax rule, tak-
ing care to match the data type and
form precisely. In particular, assure
that Memory variables used are of
the proper type, and use literal val-
ues (or an equivalent macro) — not
variable names — if a literal form is
shows in a manual example.

3—Assume nothing! Many dBASE
statements and functions which
have the same name as in BASIC
behave differently, and in some
cases the dBASE II manual does not
contain complete documentation,
or is in error. If in doubt about any
statement or function, construct a
few test lines which use the ques-
tionable item or form and execute
these lines one at a time in dBASE
H's interactive mode with SET
TALK ON. Record the actual re-
sults you get and be guided by real-
ity, not preconception.

The Correct Use of Strings and Quotes
in Macro Data

If a macro call is to return a 5, type
STORE '5' to X (or use another form of
string variable definition). Then, the
computation ? &X + 5 will reduce to ?
5 + 5 and yield 10. If you STORE 'Ad-
dress' to MFileA, then USE &MFileA
will reduce to USE Address, the de-
sired form. In the same way, if you
want a quoted string, double quotes
must be used in a literal STORE (or the
data must contain surrounding quotes
by other means). For example if you
STORE "'$###,##'" TO Formatl
(where the different quote types are
necessary) &Formatl will give a
quoted string as needed in @ 10,10
SAY Totahl USING &Formatl which
must reduce to @ 10,10 SAY Total:1
USING '$###.##' to meet the syntax
requirements this statement. If you
STORE '5' to MDog and STORE '6' to
MCat, then 1 &MDog&Mcat yields
56, but ? &MDog + &MCat yields 11,
because "+" is taken as an addition
operator. Using the same data, ?
'&MDog' + '&MCat ' reduces to

Three Rules that Eliminate Trouble in
dBASE II

The dBASE II command language was
designed to promote structured pro-
gramming to ease program mainte-
nance, both objectives to its credit.
However, dBASE II acts like a psycho-
logical ink-blot test for many persons
familiar with BASIC and other high
level computer languages. Because

Lifelines, March 198212

the minimum rule is treacherous, par-
ticularly if (1) the result of STR will be
written to a database file, or (2) a
macro depends upon a correct string
form from STR for further action.
Here is what happens: (1) If no length
is specified, an error message results;
(2) If < length > is of insufficient
width for the sign (if any) and integer
portion of < expression > , the field is
filled with asterisks, but no error mes-
sage is issued; (3) If < length > is in-
sufficient for sign, integer portion,
decimal place, and specified decimal
places, the field is filled with asterisks
to a few low order digits, but no error
message is i ssued; and (4) If
< length > is in fact sufficient for sign
and integer portion of < expression > ,
but < decimals > is not wide enough
to contain those available from < ex-
pression >, then the STR function
truncates (not rounds) the least signifi-
cant positions. Whether or not a full
or partial field of asterisks will affect
later program steps (where a string
representing a number is expected)
will depend upon later use and tests of
the erroneous asterisk-containing re-
sult. The danger is that no messages
occur for such errors, and a command
program will not halt. Accordingly,
portions of a database file may be in-
correctly altered unwittingly by this
route. The action of macros depen-
dent upon an unexpected STR result is
also uncertain and depends upon the
application. Fortunately, if a macro is
used to place an asterisk-containing
string into a substring function for
< start > or < length >, an error
message will occur.

EXTREME CAUTION: Be sure the
< length > specification in STR is big
enough to contain sign, the largest in-
teger ever to be encountered plus deci-
mal point and any < decimals > speci-
fied. Because of the large number of
type conversions required in dBASE
II, errors in this function are likely.

Some Critical Documentation on
dBASE II Functions

All dBASE functions work as de-
scribed in the manual with the excep-
tion of the string function "STR" and
the substring function "$()", for which
the documentation is critically incom-
plete. Note however that VAL (unfor-
tunately) differs from BASIC and al-
ways gives an integer result. INT also
differs from BASIC's algebraic treat-
ment and truncates with sign. dBASE
H's STR format critically differs from
BASIC's STR$ in that string length
and decimal positions must be appro-
priately specified, whereas neither is
required by STR$.

Moreover, the use of dBASE II func-
tions is apparently subject to several
foibles, including 1) unacceptable
substitution in place, 2) out of range
substring specifications which are not
completely trapped, and 3) untrapped
insufficient width specification for
STR (as illustrated subsequently).

Certain functions, notable STR and
VAL, appear to give erroneous un-
trapped results when used in place.
See if you get this result:

. SET TALK ON

. STORE 1234.567 TO X
1234.567
. STORE STR(X,9,3) TO String
1234.567
. STORE STR(X,9,3) TO X

0.000

The result 0.000 is an unreported er-
ror; the value of X is lost. Under some
conditions VAL acts similarly.

. STORE "1234" TO X
1234
. STORE VAL(X) TO X

0
Other functions place an extra leading
blank in results processed in place:

. STORE "1234.5678" TO Temp
1234.5678
. STORE @(".",Temp) TO Temp

5

Temp will, however, process correctly
later, because leading blanks are disre-
garded in numerics. However, avoid
trouble and never use functions in
place.

Reasonable out of range references

Lifelines, Volume II, Number 10

when using a substring function in
dBASE II will be trapped and return a
BEYOND STRING message. How-
ever, an excessively large out of range
reference will give and store trash
results, which at a subsequent step can
incorrectly alter other variable and
often bomb the system. To illustrate,
try this, create and store and string,
say, 214 characters to a memory vari-
able called String. Next try successive
values of < length > in

STORE $(String, 200, < length >) to
Tempi

In this illustration, correct error trap-
ping occurs for < length > values up
to 57, but for 58 and over dBASE II
performs the substring extraction er-
roneously, and stores to Tempi
< length > characters of garbled text
— without warning. This is undoubt-
edly another accumulator overflow
problem in dBASE with no carry
check. Note that the attempt is to ex-
tract characters from 200 through 199
+ 58 = 257, inclusive. Because 257
decimal is one more than the maxi-
mum 256 decimal count allowed in an
eight bit accumulator (0-255 decimal
or O-FF hex) an overflow occurs. The
carry bit is set, and the accumulator
contains a value which passes the
bounds test. Accordingly, the sub-
string extraction looks okay to
dBASE, which proceeds to do its thing
with unfortunate results.

EXTREME CAUTION: An out-of-
range error is relatively easy to make
in the substring function, and because
is is so critical it is worthwhile to com-
pare < start > and < length > to
LEN(< string >) in the program line
prior to any substring action. In other
words, program your own bounds
check to circumvent this dBASE II er-
ror trap omission.

Be sure to provide adequate length
value in STR. STR(< numeric expres-
sion > , < length > ,[< decimals] >) re-
quires that < length > and < deci-
mals > (if that option is used) both ap-
pear as positive literal integer numer-
ics (or an equivalent macro). The max-
imum specification of < length >
must not cause the Memory variable
area to be exceeded, nor exceed 254.
The penalty for excess is potential
wipeout. The minimum value for
< length > is total field width, includ-
ing sign, decimal point and any deci-
mal positions specified. Violation of

dBASE II Documentation

The dBASE manual contains one or
two minor errors and a few more un-
derdocumented spots worth noting.

SET DEFAULT TO B: and DISPLAY
FILES ON B: will not work unless you
omit the colon.

The blank squash operation, totally
undocumented, actually moves non-

(continued next page)

blank data to the left of a fixed field
equal in size to the sum of all fields
combined. See Exhibit A. This can
lead to a resulting field of considerable
width, containing mostly blanks,
which rapidly eats up the 1535 charac-
ter Memory variable area, or can ex-
ceed the 254 maximum string length,
unless the blanks are stripped off or
the var iable RELEASEd. When
dBASE II performs blank squash, a
leading blank in a string is not
squashed. Accordingly, "MARYbb-
bb" -"bANNEbbb" (where the lower
case "b" indicates a blank) will yield
"MARYbANNEbbbbbbb".

The screen-editing data acquisition
construction:

@ < coordinates > SAY < expression >
GET < variable > PICTURE < format >

(should appear on one line)

is very handy for data editing, but is
tricky and only sparsely illustrated.
To avoid problems and prior data on
the screen, handle all data in string
form, and convert to numeric later if
necessary. Pre-define a string Memory
variable exactly the width of the PIC-
TURE, store blanks in it, and be sure
to set it to blanks again after you have
captured the data and moved it to an-
other variable. You must use a quoted
literal string for < format >, or a
macro resulting in the same thing. Do
no forget READ after the GET, or you
will capture no data. If you do not re-
set < variable > to blanks, the current
value of the variable will appear, and
you can edit it in that form if desired.
For initial data entry, the blanked-out
variable form is best.

Finally, contrary to the documenta-
tion of SELECT, variables not in the
current use file which are also
uniquely named (are not duplicated
between the Primary, Secondary, or
Memory variable buffers) can indeed
be altered by a REPLACE. Suppose
you have X as a Memory variable, Y in
Primary, and Z in Secondary, then
SELECT PRIMARY. Now if you RE-
PLACE Z WITH X 4- Y, dBASE II does
exactly that. Duplicate variable names
are protected: If X is in Primary and X
is also in Secondary, then only X in the
current USE file can be REPLACEd.

dBASE II appears (after many hours of
testing) to have no quirks or bugs in
the major file-handling commands,
such as CREATE, MODIFY, DIS-

PLAY, APPEND, COPY, file conver-
sions and so on, and these utilities
alone are worth the price of admis-
sion. Apparent errors which occur in
REPORT and FIND can usually be
traced to one of the quirks or misun-
derstandings previously discussed for
the dBASE II command language,
where most of the confusion and trou-
ble occurs. With some appreciation of
the design approach used in the associ-
ated command language, dBASE II is
easy to use, fast, and a highly useful
commercial product. More complete
documentation and more graceful and
complete error trapping and recovery
procedures, however, are sorely
needed for this powerful database sys-
tem. For Version 2.02, the user is par-

ticularly advised to include pro-
grammed out of range checks for any
operation which increases Memory
variable length near the system's lim-
its, to assure within-limit references in
the substring function, and to provide
sufficient width for STR conversions.
Because any error message halts a
command program and requires tedi-
ous reversion to a text editor for pro-
gram repair, and because execution of
carelessly created command programs
can bomb the system, the user will
save time if initial care is taken in com-
mand program construction to avoid
errors in detail.

(Editor's Note: See the report in this
issue on the new version of dBASE II .)

Exhibit A

*** dBASE II Ver 2.02 4 May 81
. * Exhibit A — Illustrates Blank Strip
. STORE ’’Mary ” to MName:l
Mary
. STORE ’’Anne ” to MName:2
Anne
. STORE MName: 1-MName:2 to MName
MaryAnne
. ? LEN(MName)

16
. * Find start of blanks less 1
. STORE @(” ”,MName) to Count

9
. STORE Count-1 to Count

8
. * Convert Count to string for macro
. STORE STR(Count,2) to SCount
8
. * Now strip blanks to right
. STORE $(MName ,1 ,&SCount) to MName
MaryAnne
. ? LEN(MName)

8

A Call For Manuscripts
Perhaps you've done some writing before. Or maybe you've always wanted to
write. It could be that reading Lifelines/The Software Magazine has given you
some ideas on what you have to contribute. We're interested in hearing what you
have learned, and so are other readers. Whatever serious CP/M-80 compatible
software you've been using, we'd like you to write for us. We like to publish both
long essays and those short gems which can hold so much important information.

Send us a brief resume of your software experience, and samples of your previous
writing, if you have any. (Don't be shy if you're not an experienced writer.) Then
we can talk about your work and about payment for your efforts. If you wish to
send actual articles, please submit in machine readable form; call first to make
sure we can read your disks. Write or call: Editorial Dept., Lifelines Publishing
Corp., 1651 Third Ave., New York, N.Y. 10028. Telephone: (212) 722-1700.

Lifelines, March 198214

Gift Subscriptions
You should consider gift subscriptions to Lifelines/The Software Magazine for your friends and relatives
who are involved in microcomputing. As you probably realize from your own experience, the price of a
subscription is small for the money Lifelines can save you in a year. Just send a check or credit card
number and fill out the form below*. (Or call [212] 722-1700.) We’ll send your gifted one a note to let them
know of their good fortune, and we’ll send you a free Zoso T-shirt. (Don’t forget to tell us your size.)

Your name and address: The name and address of the gifted one:

Name
Address
City State Zip

Shirt size
Check enclosed

VISA or MasterCard Number
Expiration Date

Name
Address
City State Zip

* All orders must be prepaid by VISA, MasterCard
or check. Checks must be in U.S. $, drawn on a U.S.
bank. Subscription rates are $18 for twelve issues
(one year) when the destination is the U.S., Canada,
or Mexico. For subscriptions going to all other coun-
tries, the price is $40 for twelve issues.Signature (if payment is by credit card)

I TYPED THE WifoNfr
CHARACTER AKJfc> CANT YOU

FORGWE IT?
SHOW SOME !iAS IT WAS TOLD/

K
I B

IT
S

BETTER, M IKE
THIS ISMT THE

T IME. .

■
m

M
l

IT'S ONUY HUMAN

I THkNK THE ROTTEN
TH i Kir, i T

O/J PURPOSE

p<7>

GIVE XT A BREAK.
AFTER AU_-

Lifelines, Volume II, Number 10 15

The Osborne I Computer, Revisited Kelly Smith

Upgrade

As promised in Lifelines December 1981, the Upgrade' to the
Osborne I arrived. Despite what you may think, I am not on
Osborne's payroll! This is just the best thing that has hap-
pened to personal computing in a long time, and so it goes.

Figure this one out: I return my Osborne I to the dealer (Guy
Mongeau, 'Computers to Go', Westlake Village, CA) after
notification that my upgrade has come in. Super, so at ten in
the morning, I drop it off. They ask me if it would be any
trouble to pick it up at two in the afternoon, not next week,
but the same day! Here's the deal. . .no charge for the swap-
ping-out of: (1) an entire new keyboard, (2) new ROM moni-
tor chips, (3) a new CP/M system diskette, (4) a new Word-
Star diskette, (5) and complete checkout of the entire com-
puter! Free parts, free labor, and all smiling as if they actually
made money on the deal. . .strange!

All right, are the rest of you manufacturers and dealers of per-
sonal computers listening? Why can't you do as well to get
low cost computing into the hands of the masses with support
like this? Why is it that two Osborne I's could be purchased
for the price of one of yours, and with better software 'to
boot' (pun intended!)? Who else can respond in one day (ac-
tually four hours), and enthusiastically not make a dime? You
had better start finding some good answers, 'cause Adam
Osborne is going to blow you into the weeds if you don't!

So what is an upgrade? Well, first of all: fixes. The 'keyboard
funnies' are now gone, with real 'N-Key rollover'. The key-
board 'speed' is excellent, and now includes full left /right and
up /down 'arrow key' scrolling; and if you lose track of the
display, you can 'zap' the screen immediately back to 'center
stage' with Escaped . Horizontal scrolling now automatically
left justifies the screen as you type beyond the 52 character
display width, a definite plus for BASIC or ASSEMBLY
language programmers using long strings or comment fields
(up to 128 characters per line!). And note that the 'arrow
keys' and scrolling are optional for WordStar usage, giving
added flexibility.

Well, this was as much as I had expected for an upgrade, just
problem fixes. But wait, a good thing gets better. The
Osborne I now supports five different printer interfaces, as
well as ten 'Function' Keys (user programmable), a HELP
program for the uninitiated user, 'autoload' of the WordStar
and SuperCalc diskettes (as well as the HELP and CP/M
'boot'), for dummies that can't type 'WS' or 'SC', and (thank
you Thom Hogan) an extended directory display utility. This
is taken from CPMUG and alphabetizes the disk files, shows
their size in 'K' bytes, disk file space used, remaining disk
space and the number of active files. Overall system response
is also improved by the 'unavailability' of the Real-Time-
Clock; it's still there, but is not directly accessible /executable
as it was in the previous version of the system configuration
program SETUP.COM (i.e., the RTC is not 'hogging' the

system instruction execution time by interrupt updates). And
also, more documentation (missing some details, but I will
explain that later on!), and a completely new manual prom-
ised in the first quarter of 1982. How do they do it?

The HELP Program

At this point, I want to wander a bit (or byte) and discuss the
psychology of the Osborne I, the HELP file. I have been into
microcomputing for about seven years now, and take a lot
for granted when it comes to using a computer. They seem
like simple mindless critters with very few mysteries left. I
know CP/M well, and if a computer gives me trouble, I liter-
ally pound it into submission (my IMSAI needs an occasional
kick to get it going!). The point is, I am not afraid of the
things. But for the newcomer, IT (as in "will I hurt IT?") can
be an awesome and formidable entity, not viewed as an ex-
tension of one's own mind.

Thom Hogan's (Osborne's Director of Software /Publica-
tions) 'autoload' HELP program gently introduces the new-
comer to microcomputing; at an almost subliminal level.
Soon the new user is actually pressing some keys, sounds
dumb for you 'old timers', but I have watched many neo-
phytes approach a computer keyboard with absolute fear!
The HELP program 'talks' the user through the basics of the
Osborne I hardware and software and is 'user friendly', infor-
mative (but not overwhelming), and just flat kinda cute. At
the same time it teaches the user to 'get-the-feel' of the com-
puter painlessly, very important, and doubly useful for a
dealer demo'ing the hardware to a 'first timer'. Also im-
pressive is that the graphics video display characters and at-
tributes are utilized to 'show off', so to speak. Some of what
the user initially 'sees and tinkers with' when HELP 'auto-
loads' is pictured at the end of this article. And here is a list of
the HELP screens:

A CP/M Assembler
B CBASIC
C CP/M Commands
D Diskette Handling
E File Extensions
F Filenames
G Graphics
H Programming Hints
I I/O Ports
J Just Starting?
K Control Keys
L Layout of Memory
M Microsoft BASIC

N MailMerge
O Osborne Utilities
P Printers I Printing
Q Quitting Each Day
R The RESET Button
S SuperCalc
T Testing
U CP/M Utilities
V External Video
W WordStar
X Accessories
Y Modem Connection
Z Self Portrait

More Undocumented Features

Yep, more good surprises were in store for me with 'hidden
features' not mentioned in the new documentation:

16 Lifelines, March 1982

Osborne logo should briefly appear on the screen, and then
the XDIR directory display. This will work for ANY '.COM'
file, as long as the string length byte count is inserted at ad-
dress 168 Hex, the proper ASCII hex values for the filename
are used, and the filename itself does not overrun the 'null'
character space...easy huh?

Keyboard characters and '}' — for you PASCAL
PHREAQUES that prefer to use 'curly brackets' instead of '(*'
and '*)' for comment lines. . .use Control-, (comma) and Con-
trol-. (period), which maps to the uppercase equivalent of ' < '
and '> ' characters on the new Osborne I keyboard.

ROM Diagnostic ZR ead in test' — Although it is now briefly
mentioned in the HELP program that the built in ROM Diag-
nostic is available with keyboard Control-D at RESET, no
mention is made at all of the 'R ead in test'. . .so here's what it's
all about: entering 'R' at the keyboard allows inputing of 8 bit
data via the RS-232 serial interface connector. The data is
automatically stored starting at address 4000 Hex (while be-
ing simultaneously displayed on the screen), and incremented
up through memory on a byte-by-byte basis determined by
the first word (two bytes) initially received by the Osborne I's
serial interface. That's why you will see 'Len = ' (for record
length) displayed; if you give the computer the LOW byte
count, then the HIGH byte count (in binary!), it displays this
value and then proceeds to 'gobble-up' all remaining incom-
ing bytes as data, until the byte count has been completed.
The data are then executed starting at address 4000 Hex as a
program; just make sure that the data is executable 8080 or
Z80 instructions, or strange and wondrous results will
follow!

ROM Diagnostic 'M emory' test — This is documented, but
leaves a lot to be desired; it only tests RAM from address 4000
Hex to EFOO Hex, with just a simple 'pattern stuffing /check
for match' type of test, by rotating an initial pattern of A5
Hex through RAM. These means that only 'dead-duck' mem-
ory errors are found in the system, and that the entire bottom
16 kilobytes of RAM (where most of your programs will be
running!) go untested. It would have been simple to relo-
cate the test to address 4000 Hex (after testing that area) and
then turn off the 'shadow PROM' and test the RAM from
0000 to 3FFF Hex. Maybe in the next version of the Monitor
PROM(?).

Programmable Baud Rate Selection — for applications re-
quiring changing the RS-232 serial interface Baud rate (300 or
1200 Baud) without having to run the SETUP utility to do the
work, here is what's required, as to assembly language pro-
gramming:

0RG 4000H < ---- you must ’ORG’; we’re going
to turn on ’shadow ROM’ at
0000 to OFFF range

ACIASIN1T: ; reset AC I A, set Baud rate

MV I A,57H < ---- reset 6850 AC I A
CALL ACIA$CTL se r i a l i n t e r f ace
NOP ! NOP ! NOP ! NOP <— delay
MVI A,56H < ---- set 300 Baud(’55H’ for 1200)
CALL ACIA$CTL
NOP ! NOP ! NOP ! NOP <— delay so next we can

(continued next page)

XDIR (extended DIRectory display) - will WRITE the current
disk directory as a named file (any eight characters YOU wish
to name it!) for archival purposes. As an example:

A > XDIR *.* -OSBORNE <cr>

does the directory display as well as create a copy of it as the
file '-OSBORNE.DIR' on the 'A:' diskette. Or,

A>XDIRB:*.* B:-WSFILES<CR>

does the same thing but creates a '.DIR' file on the B: diskette.

"So what?", you ask. Take a look at newer CPMUG
volumes; that leading '-' in the preceding the filename is not
required by XDIR to create the filename, but is an 'identifier'
for cataloging the diskette using Ward Christensen's
CATALOG program from CPMUG Volume 25 or revised in
Volume 70, totally compatible with the OSBORNE I. The
usual procedure is to 'SAVE 0 -MYNAME.XXX' but XDIR
will do it for you!

AUTOST ('autoload' HELP.COM) - is patchable to auto-
load' any .COM file and execute it at the system 'boot'! After
you get tired of seeing the HELP file (and wait out the agoniz-
ing seconds to load 18K worth of text), you may want to just
have the system directly bring in XDIR to see what's on your
diskette. Of course, make a 'backup' of your system diskette
(a BACKUP utility is provided on the new UPGRADE I
diskette!), then follow along as we do a 'number' with DDT
to get the Osborne I to do our bidding:

A>DDT AUTOST.COM<cr> < ---- get ’AUTOST’ into memory
DDT VERS 2.2
NEXT PC
0900 0100
-D169<cr>

The last line 'dumps' memory starting from address 0168
Hex.

At this point you will see a digit '4' (the string length of
HELP), ASCII text to 'autoload' HELP padded with seven
'null' bytes, a ASCII Control-Z (1A hex, to clear the screen),
an 'ESCape g' sequence (IB Hex then 67 Hex, to set graphics
mode) and a terminating ASCII '$' (24 Hex used to 'end' a
message). So here's how you patch for 'autoloading' XDIR:

-S169<cr> < ---- subs t i t u t e s ta r t i ng at 169 Hex
0169 48 58<cr> <-— change ’H’ to ’X’.
01 6A 45 44<cr> < ---- change ’E’ to ’D’.
016B 4C 49<cr> < ---- change ’ L’ to ' I ’ .
016C 50 52<cr> < ---- change 1P' to 1R’ .
016D 00 .<cr> < ---- end subs t i t u t i on with ’ pe r i od ’
-S17B<cr> < ---- subs t i t u t e s ta r t i ng at 17B Hex.
01 7B 0D 1A<cr> < ---- change ’ ’ Load ing . . . ” message to
01 7C 0A 24<cr> < clear screen, ’end’ the message.
017D 0A .<cr> < end subs t i t u t i on ’ pe r i od ’
- *C < ---- Control-C to re turn to CP/M..
A>SAVE 8 AUTOST.C0M<CR> < ---- save 8 pp as NEW

’’autoload” XDIR program.

Now RESET the Osborne I, press the RETURN key, and the

Lifelines, Volume II, Number 10 17

look a t AC I A s t a tus El

RET ; somewhere we ’ ve coded 1 more POP
; than PUSH i ns t ruc t i on . .

; ”Re tu rn to A lpha Cen tau r i ”

; (Ke l l y Sm i th . . .)

Now it's a matter of checking error status, transmitter ready
status and receiver ready status, to send and receive data, so:

<------ r e tu rn f r /AC IA i n i t i a l i za t i onRET

ACIA$CTL: ; se t -up AC I A con t ro l

DI ; d i sab le i n t e r rup t s

OUT 0 ; t u rn o f f RAM, t u rn on PROM
STA 2A00H ; send to AC I A commnd/s t tus pr t

(STA 0EFC1H) <— do t h i s i f you want SETUP to
d i sp lay ac tua l Baud ra te l a t e r

OUT 1 ; t u rn on RAM, t u rn o f f PROM

El ; enab le i n t e r rup t s

RET ; ’ ’Get back Loretta” (Bea t l es)

RECSCHAR: ; r ece i ve a cha rac te r f rom ACIA

CALL ACIASSTATUS ; get ACIA s ta tus
MOV D,A ; save i t . . .
ANI 01 H ; mask o f f the REC b i t

CPI 01H ; r eady?
JNZ RECSCHAR ; loop ’ t i l l i t i s . . .
MOV A,D ; get ACIA s ta tus

ANI 10H ; f r am ing e r ro r?
JZ RECSCHARSI ; i f no t , p ress on . . .

do f r am ing er ror hand l i ng he re !

RECSCHARSI : ; no f r am ing e r ro r , what about ove r run?

MOV A,D ; get ACIA s ta tus
ANI 20H ; ove r run e r ro r?

JZ REC$CHAR$2 ; i f no t , p ress on . . .

Well, that was easy enough, but how about something really
useful like data communications between Osborne Is or even
other systems (i.e., RCPM's (Remote CP/M Systems),
Micro-Net, Forum-80, the SOURCE, etc.). If you have a han-
dle on assembly language programming, then here is the liot
tip': modify the 8K byte file MBOOT3.ASM from CPMUG
volume 62 (either create a simple 'JAM-it-to-RAM' program
from the serial port or type it all in with ED, gruesome, but
you have to start somewhere!), to then receive the bigger (and
better) PLINK1018.ASM from CPMUG Volume 62 (for the
SOURCE) or MODEM926.ASM from CPMUG Volume 61
(for RCPM file transfers). Even better yet, buy it from me for
$50 a shot for either PLINK or RCPMLINK and save some
grief! It isn't cheap, but it does work. Send those checks to
Kelly Smith, 3055 Waco Ave., Simi Valley CA 93063. I of
course, expect to make millions from this!

do f r am ing error hand l i ng he re !

REC$CHAR$2: ; no ove r run e r ro r , what about pa r i t y?

MOV A,D ; get AC I A s t a tus
AN I 40H ; pa r i t y e r ro r?

JZ REC$CHAR$3 ; i f no t , p ress on . . .

do pa r i t y er ror hand l i ng he re !

REC$CHAR$3: ; no e r ro r s . . . ge t the da ta

CALL INSACI A ; get da ta by te from the AC I A

’A ’ r eg i s te r says : ”do w i t h me what you may . . .
bu t respect me in t he mo rn ing "

Fine, now we know how to RECEIVE data, let's send data out
from the Osborne I:

O.K., so you want to do it yourself (sigh. . .) here are the rou-
tines that you patch (replace) in the CPMUG MODEM pro-
grams; and you figure out how to make the programs RUN
with shadow PROM' in the Osborne I:

In addition to the to the ACIA$INIT routine, you need to
send data OUT from the Osborne I, or receive data in to it:
OUTSACIA: ; send da ta TO the AC I A

DI

OUT 0
STA 2A01H
OUT 1

El
RET ; ’ ’Re tu rn to Sender ” (E l v i s . . .)

INSACI A: ; get da ta FROM the AC I A

DI

OUT 0

LDA 2A01H

OUT 1

El

RET ; ’ ’Re tu rn to Forever” (Ch i ck Corea)

ACIASSTATUS: ; check f o r : XMTR bu f f e r empty o r ,
; REC bu f f e r f ul I . • .

DI

OUT 0
LDA 2A00H

OUT 1

XMTSCHAR: t r ansm i t cha rac te r

save chrc t r in A on s tackPUSH PSW

XMT: CALL AC IA$ STATUS get ACIA s ta tus

AN 1 02H mask o f f XMT ready b i t
CPI 02H ready?
JNZ XMT f l ags set by ’CPI ’

POP PSW get cha rac te r f rom s tack
CALL OUTSACIA send the da ta by te . . .

Lifelines, March 198218

tried, I suspect that by using the IOBYTE and 'XON/XOFF'
protocol, you could communicate with large mainframe sys-
tems remotely with an acoustic modem, great for executives
on-the-go, or students on a college campus. Just in passing, I
have been using a Novation Cat modem to do file transfers
to /from the Osborne I, and it works super!

As if all that was not enough, the SETUP program allows you
to assign the numeric keys as function keys! Although the
"User's Guide Addendum" says "...whenever you type the
number key, the command will be issued", it should say
"WHILE pressing the 'CTRL' key..."! A minor 'glitch' in the
documentation, but I bet that it provokes a lot of phone calls
to the Osborne Dealers with "It don't work!". It took me a
few minutes to figure it out, but it does work. Also, when as-
signing a CP/M '.COM' filename to a 'Function' key, do it
just as if you were executing the command at the CP/M sys-
tem prompt; do not specify '.COM', and follow the com-
mand entry with a return, then two ESCape keyboard en-
tries. This again is not clarified in the documentation, but
then considering how fast the Osborne people are getting all
this stuff into the hands of the purchaser, it's not surprising
that some detail was left out. Thom Hogan is doing a superb
job of it all.

I use XDIR on keypad 'O', PLINK on T', and RCPMLINK
with a trailing 'T(erminal)' option on '2'. This makes for very
fast command entry, and could just as well be set up for
something like MBASIC STARTREK < cr > ' if you want 'In-
stant On' STARTREK with one keystroke.

SYSGEN and MOVCPM

The UPGRADE I documentation goes into great detail ex-
plaining how to convert your original diskettes to the new re-
quirements of the Osborne I, and don't try to cheat the se-
quence described by the way, or you will find out that it
won't work! You must follow the ERAsing and PIPing ex-
actly, to make room on the diskettes for the new diskette con-
figuration. With all this done, I anticipated (with glee!) the
moment for trying out MOVCEM and SYSGEN...Ooops!

Same old "SYNCHRONIZATION ERROR" problem as I de-
scribed in the December 1981 Lifelines article! I called Thom
Hogan at Osborne and suspect that he went scurrying off to
the production area to find out what was going on, 'cause "It's
supposed to work!".

Honest Thom, I must have called you fifty times after that to
find out what the problem was, but the phone there is con-
stantly busy! I was able to get the Osborne Operator (by call-
ing after five P.M.) to take down the serial number of my
upgrade I diskette that you wanted, so I hope she passed it on,
sure would like to 'GEN' a smaller system, so that I can do
some 'tricks' in high memory. But then as with everything else
you have done to improve the machine, I expect that the 'FIX'
is forthcoming. Also, just to comment a bit about the soft-
ware, do you make it difficult to disassemble! The newer
SETUP was pretty easy, but those guys at Sorcim made the
original one an absolute devil to figure out. Not impossible,
but definitely not easy; this is a commendation, not a com-
plaint!

(continued next page)

SETUP: The Osborne I Configuration Program

I mentioned the addition of five different printer interfaces
that can now be accommodated by the Osborne I, as well as
the ten 'Function' keys; this is really a super addition to the
functionality of the computer, but the documentation is less
than clear in some areas. This should clear up some confu-
sion:

Printers directly supported via the SETUP configuration are,
(1) the Epson MX 80 (with the serial card interface),
(2) the Qume Sprint 5 and 9,
(3) the Ricoh RP 1600,
(4) the Diablo 630 and 1620
(5) the Alpha Com DP 2000
(6) the Okidata Microline 80, 82A, 83A, 84, 2350, and
Slimline
(7) the Olympia ES 100 RO
(8) all Centronics parallel interfaces
(9) all NEC serial interfaces
(10) the PET IEEE-488 printer interface.

Printers indirectly supported are (1) the IBM Selectric 50, 60,
75, and (2) the Olivetti 121, 221, and 321. These two printers
are interfaced through Escon Products serial interface kit.
Contact them at (415) 820-1256.

An impressive array of printer types! Minimal information is
supplied however as to the RS-232 cable interfaces required. . .
here is some help:

Osborne 1 standard' RS-232 Epson, Qume, Ricoh, and
Diablo

Pin 1 (Frame Ground)
Pin 2 (Transmitted Data)
Pin 3 (Received Data)
Pin 7 (Signal Ground)
Pin 20 (Data Te rmina l
Ready)

Pin 1 (Frame Ground)
Pin 2 (Received Data)
Pin 3 (Transmitted Data)
Pin 7 (Signal Ground)
Pin 20 (Data Terminal
Ready)

RS-232 Okidata MicrolineOsborne 1 'Standard'

Pin 1 (Frame Ground)
Pin 3 (Received Data)
Pin 6 (Data Set Ready)
Pin 7 (Signal Ground)
Pin 20 (Data Te rmina l
Ready)

Pin 1 (Frame Ground)
Pin 3 (Transmitted Data)
Pin 6 (Data Set Ready)
Pin 7 (Signal Ground)
Pin 20 (Data Terminal
Ready)

Most important for all these printer interface capabilities is
the ability to direct data to where you want it to go. . .and the
folks at Osborne Computer let you redirect data to all the
possible interfaces with a full implementation of the CP/M
IOBYTE function, when more than one device type (printers
usually) is being used. This is for the rich guys with two print-
ers, who, running WordStar, want to use a Matrix Type
printer (usually fast) for rough draft hard copy, and then send
the finalized draft to a Daisy Wheel Type (usually slow)
printer. Yep, it's true, the Osborne I can support any mix of
two printer interfaces! Also, the protocols for communicat-
ing with these interfaces can be selected with SETUP for
'Standard' (hardware 'hand-shake'), 'ETX/ACK' hand-
shake,* or 'XON/XOFF' handshake. Although I have not

Lifelines, Volume II, Number 10 19

"Help — G Screen"

"Help — X Screen"

Accessories planned for the Osborne I*
12 " display monitor
double density disk option
battery pack for portable operation
direct connection modem for communications
Osborne Authorized software releases

*Contact your dealer for information regarding availabil-
ity of these items.

THIS HELP OF INTEREST PRIMARILY TO PRO-
GRAMMERS

The Osborne I is capable of displaying a number of
special characters. The following character sequences in-
voke each special display mode:

start underline < ESC > 1
stop underline < ESC > m
start half intensity < ESC >)
stop half intensity < ESC > (
start graphics < ESC > g
stop graphics < ESC > G

graphics character set: [the sample graphics set appears
here!]

To print the graphics you see on the screen you'll need a
printer that has graphics capabilities and software to
translate the display to the printer.

"Help - Y Screen"

It is possible to use your Osborne I to transfer information
via the telephone if you have bought the optional
"modem" accessory with your computer. The modem
plugs into the connector at the far left bottom of the
Osborne I, with the other end to be connected to your
telephone jack or telephone handset (depending upon
which you purchased). A full description of how to use
your modem is provided with it. Do not lose this informa-
tion as it is not repeated in the Osborne Reference
manual.

"Help — L Screen"

In addition to the main
bank of RAM shown at
the left, there is a
shadow bank, where the
ROM & I/O ports
reside. For more details,
See the appropriate
chapter in manual.

FFFF

F000
video RAM

E400
CBIOS

X600
CP/M

f
50k

1

TPA
program

area

0100

0000
CP/M Reserved

MEMORY USAGE:
"Help — Z Screen"

WordStar 44k
MBASIC 24K
CBASIC 18k
SUPERCALC 40k
UTILITIES 16k

/ 1 ____ 1 __________ 1 ____ 1 \
I l l i
1— 1___1— 1
| o DRIVE A 1
1 ___________1

1 M i l l
1 1 1------ 1___1 -----1
1 5 INCH | | o DRIVER |
! MONITOR | |

1 1 _____________
\
1

| DISKETTE SLOT |
1 ___________1

I _________| | DISKETTE SLOT |
1 ___________1

/
1

/

[J [___] [_

BRT DIM RESET
[___] (o)(o) (o)

] KEYBOARD [] []

\

"Help — T Screen"

Your Osborne I has a built-in diagnostics program. To
use it, press the RESET button, then type a control-D.
You may then:
D — DISK TEST: use a brand new diskette that you've

just formatted.
K — KEYBOARD TEST: type characters and watch the

monitor to make sure they're displayed.
M — MEMORY TEST: continuously tests your com-

puter's memory. The changing character at the top
of the screen is normal.

If you find the test messages cryptic or don't understand
something, have your Osborne dealer run the tests for
you.

| MODEM SERIAL IEEE EXT.VID BATT |
th

THE OSBORNE I

[Thom Hogan’s signature. . . nice job Thom!]

20 Lifelines, March 1982

Tips and Techniques

Ron Fowler has sent us this tip on conditional interrupts in the 8080 and Z80 CPUS.

"Quite often, in the course of writing interrupt-driven programs, it is necessary to disable interrupts around certain indivisi-
ble blocks of code. When such a block has finished executing, interrupts can be re-enabled. I've often found it necessary to
enable interrupts ONLY if they were enabled on entry; if they were not enabled, then my program must not enable
interrupts.

This is difficult at best with an 8080. The requirement is that ANY program in the system that unconditionally enables inter-
rupts must set a special flag as a reminder that interrupts are on. This flag must then be tested before interrupts can be safely
re-enabled. Some sample code:

;disable the interruptsMYSUB: DI

< non-interruptable code>

LDA INTFLG ;check if interrupts can be enabled.
ORA A
RZ ;return if they cannot
El ;otherwise enable interrupts
RET

A program that unconditionally enables interrupts must ALWAYS do

MVI A,1 ;set interrupt flag
STA INTFLG
El

This is especially tough when many of the programs you're using are not available in source form (e.g., DDT and SID, the
CP/M debuggers). The Z-80, however, allows the interrupt flag to be tested at any time. Whenever the interrupt or refresh
registers are loaded into the accumulator, the interrupt status of the CPU is copied into the parity flag. This allows the condi-
tional El to be performed with no dependence on any kind of external flags. This technique is illustrated in the following
sample subroutine, given in both TDL and ZILOG assembler code:

— TDL — 1 — ZILOG --

MYSUB: LDAR 1 MYSUB: LD A,R ;fetch refresh reg
PUSH PSW 1 PUSH AF ;save parity flag
DI 1 DI ;now disable interrupts

<non-interruptable code block>

POP PSW | POP AF ;retrieve parity flag
RPO 1 RET PO ;retn if int ff was off
El
RET

1 El
1 RET

;it was on, restore ints

Lifelines, Volume II, Number 10 21

(I’lll G Volume 78,
Catalogue

CPMUG Volume 78

NUMBER SIZE NAME COMMENTS

8K
-CATALOG.078
ABSTRACT.078

CONTENTS OF CP/M VOL. 078
Abstracts of programs

5K U-G-FORM.LIB Users Group submission form
8K VOLUME78.DOC DOC on programs not having some

078.1 4K /.ASM

other form of documentation.

Quickie SUBMIT from command
078.2 IK /.COM line.
078.3 IK /DUP.COM Same as / .ASM but produces a

078.4 10K BMAPORIG.ASM

second copy of $$$.SUB to
facilitate re-executing
Prints 2.2 disk allocation

078.5 IK BMAPORIG.COM bit map
078.6 2K CRCK.COM to check files on this disk
078.7 2K CRCKLIST.078 File of all file CRC's
078.8 3K D.COM Type D to see if any files

078.9 10K DUH.COM
have been lost on this disk
Disk Utility for the H/Z-89

078.10 3K DUH.Z80 Source for DU relocator
078.11 51K DUU.ASM Disk Utility Universal, works
078.12 7K DUU.COM with 1.4 and 2.2
078.13 14K DUU.DOC DOC on above
078.14 8K EPROM.ASM SSM PB1 PROM prog. rtn.
078.15 2K EPROM.DOC DOC on above
078.16 4K FMAP.COM File map updated for 1024 dir

078.17 IK IF.COM
entries and CP/M 1.4 or 2.2
Continue or abort a SUBMIT

078.18 2K LPRINT.ASM Paginated file output to LIST
078.19 12K MAKE.ASM Make a file a different user #
078.20 3K NOTATE.ASM Add comments to an .ASM file
078.21 IK NOTATE.COM .COM of above
078.22 3K PATCH.ASM Patch CP/M to show user: "A0»"
078.23 IK REPEAT.COM Repeat a SUBMIT "nn" times.
078.24 10K SDCOPY.ASM Single-disk file copy program
078.25 IK SDCOPY.COM , /

078.26 3K SDCOPY.DOC / r

078.27 14K SWAPCOPY.ASM Another single disk file copy
078.28 2K SWAPCOPY.COM program
078.29 3K SWAPCOPY.DOC
078.30 IK TestProt.BAS Sample to test UN.COM
078.31 5K UN.COM Unprotect MBASIC programs
078.32 23K XREFPRN.ASM Prints a cross-reference from
078.33 3K XREFPRN.COM a PRN file to CP/M LIST device

Lifelines, March 198222

. . . And Abstracts
Abstracts

ASM-COM/DUP.COM
.ASM by John M. Kodis, reads a com-
mand line which may contain several
program invocations. A $$$.SUB file is
built with these commands. This file is
then executed. This is functionally
equivalent to /.COM on CPMUG vol
40, for which I did not distribute the
source because it had other functions in
it I was not prepared to document.

A compile-time option allows writing a
second copy of the $$$.SUB file, so you
may "ren $$$.sub = /.sub" then TC, to
re-execute the same commands. A ver-
sion compiled with this option is on the
disk as "/DUP.COM".

option for cleaning up a disk.

DUH.COM/Z8O
Bill Norris wanted to run DU (CPMUG
volume 46) on a Heath /Zenith-89. He
made a relocator for it. The .COM file
includes the relocator, and DU itself. It
runs at either lOOh or 4300h. You
would of course have to figure out how
to transfer these files to a H/Z-89
system.

DUH.Z80 is NOT the DU source. It is a
relocator for the DU version from
CPMUG volume 46. 1 presume it could
be modified to work with the newer
DUU on this disk, perhaps by changing
the load addresses since DUU is quite a
bit longer than the old DU.

NOTE that it is written for a Cromem-
co Z-80 assembler, yet generates only
"8080" instructions. The program self-
relocates(l) itself. The source was
mainly supplied to satisfy the curious.
See Lifelines, Volume I, Number 1 for
information on using DU. Also, some,
but not all, information from
DUU.DOC (next) applies.

DUU.ASM/COM/DOC
This is an enhancement of the DU (Disk
Utility) program from CPMUG
Volumes 40 and 46. Ron Fowler made
it "universal" in that it looks at disk
parameter blocks to run on virtually
any 1.4 or 2.2 disk system. I added a
few bells and whistles, and modified it
("removed stylistic changes") to make
it most closely reflect what had been
NECESSARY to change from those
earlier CPMUG versions.

The source contains equates for non-0
CP/M systems; I do not know if it AC-
TUALLY works on them. Perhaps
someone will report back?

See .DOC for complete details.

EPROM.ASM/COM/DOC
This is Thomas Sly's EPROM pro-
gramming program for the Solid State
Music's PB1 PROM programming

board.

The program runs under DDT along
with the software to be burned into
EPROM. Includes copy', 'verify' and
'program' of 2708, 2716 and 2516 type
EPROMS.

Note this program has a 4000H byte
open area in it at the BEGINNING so if
you are tight on disk space, you may
want to buy back 16K by simply read-
ing in what you want to burn at a bias,
rather than reading it at 100H.

FMAP.COM
My update of CPMUG Volume 40
FMAP. The reason this is on the disk is
that I get more letters about FMAP not
working than about any other pro-
gram. The earlier versions didn't sup-
port enough directory entries, and
didn't handle 2.2 "80H" bits in the file
names.

This version supports 1.4 and 2.2, up to
1024 directory entries, finds files in all
user numbers, etc. The bit map func-
tion has been updated to handle 2.2
also.

It still needs some work to properly
handle disks with > 2K allocation
groups. I believe only the "K" option
doesn't quite work with those large
allocations typical on large hard disks.

There is insufficient room left on this
volume to include the source; I will
continue working on it, and place it on
a future volume.

Further DOC via "FMAP H" com-
mand.

IF.COM
My program, used in SUBMIT to test if
a file does or doesn't exist.

LPRINT.ASM
by P.P.H. Lee, Royal Melbourne In-
stitue of Technology.
This program is a substitute for STAT
LST:=LPT: and STAT LST:=TTY:
Its format, LPRINT ON and LPRINT

(continued next page)

BMAPORIG.ASM/COM
(Caution: 2.2 only)
BITMAP for CP/M 2.0+ by Lauren
Guimont. The bitmap idea is based
upon my ALLOC program which was
hard-coded for single-density disks
only.

This version prints total disk capacity,
amount used, and amount left. The
'amount used" is handy to have when
wishing to know if the files on a DD
disk will fit on a SD disk.

CRCK.COM
by Keith Petersen.
The program included on every
CPMUG volume to allow you to verify
the contents of the disk. Executing
"CRCK *.* F" writes CRCKLIST.CRC.
That file has now been renamed to
CRCKLIST.078 so CRCK *.* F won't
inadvertently overwrite the original
file.

D.COM
by Ward Christensen
Just type "D" to verify that all the files
that are supposed to be on the disk, are.
There is also a generally useful pro-
gram to maintain disks-deleting un-
wanted files, etc. "D H" prints help.
Source to be released on a future disk.
Most significant new feature is "D CU"

Lifelines, Volume II, Number 10 23

Payment covers the cost of the
diskette(s), packaging, and shipping.
Checks must be in U.S. dollars, drawn
on a U.S. bank. Domestic shipping is
via UPS where a full street address is
given; all other orders are via U.S.
Postal Service.

CPMUG receives orders by mail only;
they have no phone service. Orders
should be sent, with prepayment, to
CPMUG, 1651 Third Ave., New York,
N.Y. 10028.

Members receiving the material are re-
minded that software contributions are
necessary if the exchange program is to
prosper. Software contributions are
gladly received for inclusion into the
Library with the understanding that the
contributor is authorized to make the
material available to others for their in-
dividual non-commercial use.

Software should be accompanied by
sufficient documentation in the form of
internal comments or accompanying
* .DOC file to permit the material to be
applied and/or modified. Where ap-
propriate, the documentation should
describe any supporting software (in-
terpreter, memory, clock, etc.) neces-
sary to use the routine. For your conve-
nience, a comprehensive submittal
form is now included on most distrib-
uted diskettes.

Contributors are invited to request any
Library Volume in exchange for the one
submitted.

produce a cross-reference from the out-
put of ASM. Modifications by P.P.H.
Lee. Like its predecessor, it goes di-
rectly to the CP/M LIST device, with
numbered lines, then produces a cross-
reference by line number (not address).
This does not appear to be based upon
CPMUG 36.36, which was another de-
rivative of 8.27.

OFF, is easier to remember.

MAKE.ASM
Terry Lewis wrote this nifty program
to change the user number of any ex-
isting file or set of files. This makes the
CP/M USER function much more
usable, since files may quickly be
changed from user to user without hav-
ing to PIP them.

NOTATE.ASM/COM
Martin E. Nason updated this pro-
gram, originally CPMUG program
29.13. Those of you who feel 13 is
unlucky can use this for an example.
Apparently 29.13 got badly screwed up
somehow - control chars in the file, etc.
Martin took the glitches out, and sent
this version in. It requires many of the
macro libraries distributed with MAC.
A .COM file is supplied, and works
well. There should be no need to
reassemble it. It is also a good sample
program of the use of the various
Digital Research MAC libraries.

UN.COM
Bill Norris' program to unprotect
MBASIC version 5.x programs. This
single .COM file contains its own docu-
mentation. A bit is available via typing
"UN HELP", and even more by doing
"TYPE UN.COM". Yes, that's
".COM". He did some clever things.
This program looks "very nice" in that
you pre-load it into your system, and it
"goes somewhere where it doesn't take
TPA room". Then, you load MBASIC.
Load your BASIC program, and if you
type TU it becomes unprotected. Voila!
The author suggests that people use it
". . .for the recovery of their OWN pro-
grams."

Ward Christensen

Ordering From
CPMUG
Many of you have inquired about or-
dering volumes from The CP/M Users
Group.

The complete catalog of volumes is
available for $6, prepaid, to the U.S.,
Canada and Mexico. The price is $11
for catalogs sent to all other countries.

Software is obtainable exclusively on
diskette; CPMUG does not supply
printed documentation. Prepaid media
and handling charges are as follows:

8" IBM format to U.S., Canada, Mex-
ico $8

8" IBM format to all other countries
$12

North Star format to U.S., Canada,
Mexico $8 or $12

North Star format to all other countries
$12 or $16

As you will note, software is available
in 8" IBM and North Star S1/ / for-
mats. Write for a price list of North
Star format volumes, as prices vary for
volumes in this format.

PATCH.ASM
Terry Lewis submitted this program to
print the current CP/M 2.2 user # as
part of the "A>" prompt of CP/M,
e.g. "A0>"

REPEAT.COM
For SUBMIT, this allows repeating a
SUBMIT file "nn" times. Look at
VOLUME78.DOC for details.

SDCOPY.ASM/COM/DOC
Don Baileys revision of CPMUG
29.30, a single-disk MOVE program,
which only handled files that fit in
memory. This version handles larger
files. Further information is in
SDCOPY.DOC.

STOP

. . .what you're doing right now if your
subscription began last April. You're
about to miss an issue.

If your subscription began last April
you've been notified that this is your
last issue. If you haven't responded,
get out that renewal form and drop it
in the mail right now with your pay-
ment. Or get out your VISA or
MasterCard and call Lifelines/ The
Software Magazine Subscription
Dept, at (212) 722-1700. The address
is: 1651 Third Ave., New York, N.Y.
10028.

SWAPCOPY. ASM/COM
by John M. Kodis. This is a file transfer
utility for single drive systems. It was
designed to allow a single drive system
to be used to transfer any file or group
of files from diskette to diskette. There
are no restrictions on the number or
size of the files. Further information is
in SWAPCOPY.DOC.

XREFPRN.ASM/COM
Version of CPMUG 8.27, modified to

Lifelines, March 198224

Configuration Parameter Storage
for PL/I-80 Michael J. Karas

appropriate disk file and allows move-
ment of the data to the 'host' PL/I-80
program. The following paragraphs
will discuss the philosophy of the base
sector access method, and operation of
the various assembly language
routines.

The design of the assembly language
modules below has been done in a way
to allow the reader to easily grasp the
concept. Many other coding formats or
interface conventions could be devised
to adapt the scheme to one's applica-
tion in either a more diversified or more
efficient manner. A short discussion of
the modification possibilities is given
further on.

The base sector scheme assumes that a
PL/I-80 program is to be linked to the
code shown in Listing 1. The assembly
language would be linked first, so that
the buffer is forced to reside within the
bounds of the first sector of the resul-
tant object code file. The base sector of
the file name given in the file control
block (FCB) could then be read and
written to access the appropriate
parameter data. Note that as coded, the
FCB can contain the name of any disk
file on the default logged drive, in-
cluding the name of the COM file that
contains the assembly code. If the name
is different from the loaded object pro-
gram, then that program is most likely
an installation or configuration pro-
gram that "sets" the operating
parameters of the differently named
file. If the name is the same as the

loaded command COM file, then the
program is able to access information
that is a direct part of itself. There is ab-
solutely no requirement that the name
of the file be anything specific.

The assembly language program con-
tains four entry points, RDBASE,
WRBASE, GETPARM and PUT-
PARM. These respectively read, write,
fetch and place data to the base sector
buffer contained as a part of the host
program. The method used by the
assembly language to allow writing of
the base sector without a subsequent
file 'CLOSE' operation requires that en-
try point RDBASE be called first. This
opens the file, establishes the file con-
trol block parameters and reads one
logical sector. The WRBASE entry
point may then be called to force
rewrite of the sector with new data.
The tricky FCB manipulation done in
the WRBASE code sequence has been
shown to work for Digital Research's
CP/M-80 Versions 1.4 and 2.2. Other
versions may be excepted and the
method to force sector rewrite for other
CP/M-80 look-alike systems may be
different.

The memory map of the final linked
object code file is shown below. Note
that due to the initial JUMP instruction
installed at address 0100H by the link
process, a total of 125 bytes (one 128
byte logical sector minus a 3 byte
JUMP) are available to be read from the
appropriate disk file by the RDBASE
assembly language entry point.

Many microcomputer applications
programs require that certain param-
eters of the program execution environ-
ment be variable, so that the program
can be tailored to the task at hand while
retaining a means for keeping the
parameters semipermanent. Retaining
the configuration information saves
re-entering or re-installing the con-
figuration parameters each time the ap-
plication program is loaded into the
user's computer memory. An often-
used "normal" method of retaining the
parameters is to store them in a small
separate read/ write disk file. The side
file has its problems, however, since it
must be kept on the disk as part of the
applications system.

Another method exists that provides a
particularly elegant solution to the
parameter storage problem. Examples
of this method include the CRT Ter-
minal characteristics storage contained
inside the object code image of Micro-
Pro's WordStar or Ashton-Tate's
DBASE II. In these cases, the parameter
information is accessible from the same
file as the real, executable program.
The method of configurable parameter
access and update presented in this arti-
cle is devised to permit the storage of
the parameters within the first logical
sector of the object code file, namely
the first 128 bytes of the CP/M-80
COM file.

Assembly language interface and
coding examples of external routine ac-
cess within the Digital Research
PL/1-80 applications programming en-
vironment were presented in a former
two part Lifelines article entitled
'Assembly Language Interface for
PL/I-80'; it appeared in the September
and October 1981 issues (Volume II,
Numbers 4 and 5). The parameter
mechanism shown here utilizes the
same type of assembly language inter-
face, so the mechanization details will
not be repeated here.

The heart of the configuration data
storage is a small module of 8080
assembly language that performs the
primitive functions of accessing the
first (base) logical sector of the

Lifelines, Volume II, Number 10

Memory Address
0100H
to

0102H

Contents
Jump to start up initialization point inside of
PL/I-80 program inserted at Link time.

0103H
to

0182H

128 byte buffer to read base sector accessible disk
file into.

0183H
to

top of assembly code

Object code position of machine language entry
points defined by program module shown below.

top of assembly code + 1
to

end of PL/I-80 object image

Object code image position of PL/I-80 applica-
tions program.

(continued next page)

the file name to the assembly
language entry points.

f) A final suggestion would be to
devise a second, slightly simpler
assembly language module that
didn't read the COM file at all but
assumed that the data was already in
memory as a result of the applica-
tions program being loaded by the
CP/M-80 command processor. In
this case it would be assumed that
another separate "installation" or
"configuration" program would
write the parametric information in-
to the base sector utilizing the
scheme given in this article.

Given at the end of this article in Listing
2 is the shell of a PL/I-80 program that
could use the entry points of the
already-defined base sector routines.
The most significant feature of this pro-
gram is the use of based storage alloca-
tion for the parameter area. This per-
mits the data from the parameter area
to be accessed in an application-depen-
dent fashion. One declare defines a
complete 125 element array of single
byte characters. Second and third
declares provide a simple illustration of
two other overlay access templates
which allow reference to data variables
from the parameter sector. The exam-
ple declares give only an inkling of the
possibilities available. The program-
mer should be careful to make sure that
the memory storage requirements of
any overlay template do not exceed the
125 byte maximum. (This warning
may be ignored by the more experi-
enced PL/I-80 programmer as long as
ALLOCATE statement given in the
program names the largest item of
those pointed to by pointer variable P).

Several special motes about this pro-
gram are discussed below:

a) The program utilizes implied
pointer references. The programmer
is free to use pointer qualified
references of fixed storage allocation
for the various data aggregates. In
the latter case the pointer for
passage to the GETPARM and PUT-
PARM subroutines could be deter-
mined by the ADDR built in func-
tion.

b) Note that the program contains
declare statement entries to define
the external assembly language en-

try points. These could be placed in
a separate .DCL file and included in-
to your PL/I-80 source program
with the % INCLUDE statement.

c) The shown order of external entry
point calls must be maintained for
the assembly language to function
properly. The GETPARM and/or
PUTPARM functions may be called
as many times as desired to move
data into and out of the buffer. The
RDBASE function may be called at
any time, in a multiple manner if
desired. WRBASE may spoil the
validity of the default disk drive if
the entry point is called before the
RDBASE function. Finally, the
WRBASE function may only be call-
ed once after each RDBASE call. (At
your own risk if you don't use gen-
uine CP/M-80 1.4 or 2.2 and follow
the rules here).

In order to get the base sector param-
eter routines positioned properly to
match the memory map previously
shown, the following link sequence is
used. The Assembly program assumed
to be named "PARM. ASM" is con-
verted to a .REL file with the Digital
Research relocating macro assembler,
RMAC. The PL/I-80 program named
"TESTPROG.PLI" is compiled with
the PL/I-80 compiler into a relative for-
mat .REL file. Both are appropriately
linked and formed into "TEST-
PROGCOM" with the command:

A > LINK TESTPROG = PARM,TESTPROG < cr >

where all files are assumed resident on
logical CP/M-80 disk drive A:.

In the normal manner I hope the exam-
ple presented here provides the reader
with a method to solve some lingering
problem. Although the program sam-
ples are short and probably easy to
type in, I am still happy to provide the
complete source for this article. If you
want a copy, just send me a BLANK
pre-formatted eight inch single density,
single sided floppy diskette, in ap-
propriate packaging, to the address
shown in the program listings. Please
include a pre-postage paid return
mailer envelope or sufficient return
postage. Avoid sending CASH. Note
also that it now costs about a dollar and
a half to send a diskette, due to recent
postal rate increases.

[See Listings 1 and 2 on the following
page.]

Listing 1 is the program in 8080
machine language that provides entry
point definition for a PL/I-80 program
to access the base sector of a disk file.

The list below includes some of my
ideas on how the previously presented
assembly language structure could be
changed to fit other applications. Use
these as guidelines to jog your memory
and challenge your programming ex-
pertise as you modify the code pre-
sented here.

a) The entry points RDBASE and
GETPARM could be combined into
one function. This eliminates one
CALL in the example PL/I-80 pro-
gram shown below - i.e., the base
sector would be read and moved to
the host program all in one shot.

b) Like in a) above, the entry points
PUTPARM and WRBASE could be
combined into one function. As
before, this would eliminate one
CALL in the applications program
and the base sector data would be
moved and written all in one opera-
tion.

J
c) The need for the buffer could be
eliminated if the RDBASE and
WRBASE entry points were called
with a pointer variable defined as
the base storage of the PL/I-80 pro-
gram data area. The system call to
set the read/write buffer address
(SET DMA ADDRESS) would use
the passed pointer value as the host
disk access buffer address.

d) The buffer could be retained but
the need for internal program stor-
age allocation eliminated if the
RDBASE entry point returned a
pointer to the applications program
telling of the location of the buffer.
This would permit the applications
program to overlay the data access
structure directly over the buffer.
The pointer returned would be used
in pointer qualified references to the
overlay structure or array. Note
that both ideas c) and d) eliminate
the need to perform the 125 byte
block moves between the local buf-
fer and the internal PL/I-80
parameter storage area.

e) A variable nature could be at-
tributed to the file access entry
points if the PL/I-80 program passed

Lifelines, March 198226

Listing 1
MICRO RESOURCES ASSEMBLY LANGUAGE PARAMETER SECTOR ACCESS PROGRAM

**

THIS MODULE OF SOFTWARE IS A SMALL PROGRAM THAT IS TO
BE LINKED TO THE BASE OF AN APPLICATION OR PL/1 -80
PROGRAM. THIS MODULE CONTAINS ENTRY POINTS THAT:

A) READ IN THE PRESENT CONTENTS OF THE FIRST 128 BYTES
OF A F ILE NAMED AS DETERMINED BELOW. BUFFER IS IN THIS
MODULE .

B) WRITE OUT THE PRESENT CONTENTS OF THE LOCAL 128 BYTE
BUFFER TO THE FIRST SECTOR OF THE FILE NAME DEFINED
BELOW .

C) COPY LAST 125 BYTES OF THE BUFFER TO AN AREA OF MEMORY
POINTED TO BY THE ENTRY POINTER.

D) COPY 125 BYTES FROM SOME AREA OF MEMORY TO THE BUFFER
POINTED TO BY THE ENTRY POINTER.

LXI D, BUFFER ;SET DMA ADDRESS FOR WRITE
MVI C, STDMA
CALL BDOS
LXI D, F ILEFCB ; POINT FOR REWRITE
MVI C, WRITER
CALL BDOS
RET

ENTRY POINT TO PASS 125 BYTES OF PARAMETERS TO THE PL/ l -80
PROGRAM

ENTRY FROM PL/ I - 80 CALL WITH A POINTER

GETPARM :
CALL GETPNT
LXI H ,BUFFER+3
LXI D ,125

GPAR1 :
MOV A,M
STAX B
INX H
INX B
DCX D
MOV A,D
ORA E
JNZ GPAR1
RET

;GET POINTER ADDRESS TO (BC)
; OFFSET INTO BUFFER
;SIZE OF PARAMETER AREA

,-FROM BUFFER
;TO PL/ I DATA AREA
; BUMP POINTERS

; DECREMENT SIZE COUNTER
.•CHECK IF DONEWRITTEN BY:

MICHAEL J . KARAS
MICRO RESOURCES
2468 HANSEN COURT
SIMI VALLEY, CA 93065
(805) 527 -7922

.•BACK TO PL/ 1 -80

ENTRY POINT TO MOVE 125 BYTES OF PARAMETERS FROM PL/ I -80
PROGRAM TO LOCAL BUFFER

ENTRY FROM PL/ I -80 CALL WITH A POINTER

PUTPARM:
CALL GETPNT
LXI H .BUFFER+3
LXI D ,125

PPAR1 :
LDAX B
MOV M.A
INX H
INX B
DCX D
MOV A,D
ORA E
JNZ PPAR1
RET

SYSTEM INTERFACE EQUATES FOR FILE l /O AND ERROR MESSAGE PRINTING
.-GET POINTER ADDRESS TO (BC)
; OFFSET INTO BUFFER
, -SIZE OF PARAMETER AREA

,-FROM PL/ 1 DATA AREA
,-TO BUFFER
;BUMP POINTERS

; DECREMENT SIZE COUNTER
; CHECK IF DONE

BDOS
PRINT
OPEN
READR
WRITER
STDMA

EQU
EQU
EQU
EQU
EQU
EQU

NAME
TITLE

0005H
9
15
20
21
26

'PARM'
' PARAMETER

,-FILE MANAGER ENTRY POINT
; PRINT STRING FUNCTION
,-OPEN FILE FUNCTION
,-READ RECORD FUNCTION
; WRITE RECORD FUNCTION
;SET DATA BUFFER ADDR

SECTOR ACCESS MECHANISM FOR PL/ l -80 '

; DEFINE PUBLIC ENTRY POINTS FOR THE FUNCTIONS IN THIS MODULE

PUBLIC RDBASE ; ENTRY TO READ FIRST SECTOR OF FILE
PUBLIC WRBASE ; ENTRY TO WRITE F IRST SECTOR OF F ILE
PUBLIC GETPARM ; ENTRY TO TRANSFER 125 BYTES OF

; . .PARAMETERS TO PL/ l -80 PROGRAM
PUBLIC PUTPARM ; ENTRY TO MOVE 125 BYTES OF

,-BACK TO PL/ 1 -80

END

. . .+++END OF FILE

Listing 2PARAMETERS FROM A PL/ l -80 PROGRAM

; SETUP BUFFER AREA FOR FIRST SECTOR OF FILE

BUFFER:
DS 128 ; LOCAL SECTOR STORAGE AREA FOR

; PARAMETERS 125 BYTES REFERENCABLE

* ROUTINE TO DEMONSTRATE AND TEST THE *
* F IRST SECTOR ACCESS ROUTINE *

* WRITTEN BY: *
* MICHAEL J KARAS *
* MICRO RESOURCES *
* 2468 HANSEN COURT *
* S IMI VALLEY, CA 93065 *
* (805) 527 -7922 *

********************* /
/*

FIRST OBJECT CODE SECTOR OF AN EXECUTABLE IMAGE OF
THIS PROGRAM MAY BE ACCESSED BY FOLLOWING THE CODE
SEQUENCE SHOWN BELOW.

.•OBJECT FILE ACCESS FCB

FILEFCB:
DB 0 , ' TESTPROGCOM ' , 0 , 0 , 0 ,0
DS 16
DB 0

; POINTER PARAMETER FETCH SUBROUTINE

GETPNT :
MOV
INX
MOV
XCHG
MOV
INX
MOV
RET

E,M
H
D,M

C,M
H
B,M

;GET LOW BYTE ADDRESS

,-HIGH BYTE OF ADDRESS
; (HL) = ADDR OF POINTER STORAGE
;LOW BYTE OF POINTER TO (C)

;HIGH BYTE OF POINTER TO (B)

; ENTRY POINT TO READ FIRST SECTOR OF FILE

RDBASE :
LXI
MVI
CALL
I NR
JZ
LXI
MVI
CALL
LXI
MVI
CALL
RET

D, F ILEFCB
C , OPEN
BDOS
A
RDERR
D, BUFFER
C, STDMA
BDOS
D, FILEFCB
C, READR
BDOS

; POINT TO FILE FCB
;TRY TO OPEN FILE

; CHECK RETURN CODE
; PRINT ERROR BEFORE RETURN
,-SET DMA ADDRESS FOR READ

; POINT TO FCB FOR READ

;GO READ IT IN

RDERR:
LXI
MVI
CALL
RET

D, NOTPRES
C, PRINT
BDOS

; POINT TO NOT PRESENT ERROR MESSAGE

NOTPRES :
DB
DB

0DH, 0AH, ' EXECUTABLE FILE NOT PRESENT ON
0DH.0AH,

DEFAULT DISK

; ENTRY POINT TO WRITE FIRST SECTOR OF FILE

WRBASE :
LDA
ANI
STA
XRA
STA

FILEFCB+OEH
07FH
FILEFCB+OEH
A
FILEFCB+32

; FIXUP FCB FOR REWRITE

THE DATA IN THE SECTOR MAY BE MODIFIED SIMPLY
BY FOLLOWING THE SECOND SEQUENCE OF OPERATIONS
SHOWN BELOW . * /

TESTPROG: PROC OPTIONS (MAIN);

DCL
PARM
DATA2 (5)

CHAR(125)
CHAR (25)

BASED (P) ,
BASED (P) ,

/ * FULL BLOCK DATA * /
/* ARRAY FORMAT OVERLAY * /

1 DATA ACCESS BASED (P) /* ELEMENTAL OVERLAY * /
2 CURREC BIN FIXED (15) , / * LAST ENTERED RECORD NO. * /
2 FDATE CHAR (6) , / * LAST ACCESS DATE MMDDYY * /
2 FTIME CHAR (6) , / * LAST ACCESS TIME HHMMSS * /
2 TOTAL1 DEC FIXED (6 ,2) , / * RUNNING TOTAL FIELD #1 * /
2 TOTAL2 DEC FIXED (6 ,2) , / * RUNNING TOTAL FIELD #2 * /
2 TOTAL3 DEC FIXED (6 ,2) , / * RUNNING TOTAL FIELD #3 * /

P POINTER,

RDBASE ENTRY, /* READ FIRST SECTOR ENTRY * /
WRBASE ENTRY, /* WRITE F IRST SECTOR ENTRY * /
GETPARM ENTRY (POINTER) , /* GET PARAMETER DATA * /
PUTPARM ENTRY (POINTER) ; /* PUT PARAMETER DATA * /

ALLOCATE PARM SET (P) ; / * ESTABLISH DATA STORAGE AREA * /
CALL RDBASE; / * READ FIRST SECTOR INTO BUF * /
CALL GETPARM(P) ; / * F ILL LOCAL STRUCTURE WITH DATA * /

/ **
put your pa ramete r s ec to r acces s program he re . Use fe tched
in fo rma t ion , gene ra t e new da ta o r con f igu ra t i on pa rame te r s
o r what eve r you p l ea se .

CALL PUTPARM(P) ; / * TRANSFER NEW DATA TO BUF * /
CALL WRBASE; / * WRITE BACK ONTO DISK * /

END TESTPROG;

/*+++ . . . END OF PL / l -80 TEST PROGRAM * /

Lifelines, Volume II, Number 10 27

Assembler Programming Tutorial:
Input/Output Instructions Ward Christensen

until the tested bit becomes 0. Control
will then fall through the JNZ instruc-
tion, and will execute the IN DATA in-
struction, and read the data keyed.

If the status bit were somewhere other
than the rightmost bit of the status
port, we would have to "ANI" with the
proper value to isolate the bit. For ex-
ample, if the status bit were the second
from the left, i.e.

x#xxxxxx

then we would have to ANI with 40
hex, because 40 hex is 01000000 in
binary bits. The CP/M assembler ac-
cepts this in several forms, the most
common of which are binary, and hex-
adecimal. In binary, it is coded as
01000000B, and in hex as 40H.

Let's turn to the data to be read from
the keyboard. When working with
character ASCII data, the highest bit is
usually ignored, as this is the parity bit
in ASCII. Therefore, you will frequent-
ly see input routines such as this coded
with:

ANI 7FH ;TURN OFF PARITY

as the last instruction. This is so that in-
structions such as:

CPI 'R'
will test for the proper value. The 'R'
gets stored in memory by the assembler
as a 52 hex . If the keyboard we are deal-
ing with sends in the high bit as "on"
(i.e. "1"), then IN DATA places the
value B2 hex in the accumulator, and
the compare to 'R' (52 hex) wouldn't
work, even though they both are the
letter R. The ANI 7FH takes care of
this.

Not all computers have INP and OUT
instructions, yet they are perfectly able
to perform the same functions as the
8080 with it's IN and OUT instructions.
These computers use "memory map-
ped" input and output.

This means that the interface (such as
to a keyboard) watches for a particular
location in memory to be read, instead

In previous installments of the tutorial,
I covered most of the instructions for
doing data manipulation within the
8080. This month I'll show how the
8080 communicates with the outside
world. The 8080 has two instructions
for input and output.

IN and OUT

The IN instruction transfers 8 bits of
data into the 8080 accumulator from
some device. The OUT instruction
transfers 8 bits of data from the ac-
cumulator, to some device.

The instruction allows accessing up to
256 devices. You code the instructions:

IN addr
or
OUT addr

where addr is a number from 0 to 255
(or hexadecimal 0 to FF).

The data transfer is always parallel,
which means that all 8 bits of data are
transferred at the same time. There-
fore, special hardware is required for
communication with devices which do
not present all their data as 8 parallel
bits. For example, if a Teletype(R) is at-
tached to an 8080, the attachment must
contain a device for serially getting the
bytes from the keyboard, and then pre-
senting them in parallel to the 8080. It
must also contain a device for taking
parallel bits from the 8080 and present-
ing them to the TTY in a serial fashion.
This device is the UART - Universal
Asynchronous Receiver /Transmitter,
mentioned in the "terms" section of this
tutorial.

One of the commonest devices attach-
ed to a hobbyist's 8080 system is a
keyboard. I'll use this device, and show
some examples of the programming
necessary to get data from a keyboard.
I will have to get into just a bit of hard-
ware, however, to explain how a key-
board interface works.

A typical interface for a keyboard
sends data on 2 addresses, for example

0 and 1. One address is for status infor-
mation, and the other for data.

These are not memory addresses, but
are addresses, which are placed on the
address bus during the time of INP or
OUT instructions.

The address which gives us status is fre-
quently called the "status port". If you
see or hear the word "port", you may
consider it to be the "address" through
which an input or output device is
referenced.

When a key is pressed, the interface
presents a single bit of information on
the status port. I am not concerned
with what data is on the other 7 bits, so
I must isolate the single bit we are in-
terested in. If that bit has the proper
value (defined by the implementor of
the interface, as being either 0 or 1),
then that is an indication that a key has
been pressed, and we must read the
character from the data port.

In this example, I will assume that the
status bit comes in at the rightmost bit
of the status port:

xxxxxxx#

where "x" are bits I don't care about,
and is the bit showing a key has
been pressed. Here's a sample program:

WAIT IN 0 ; INPUT STATUS
ANI 1 ;GET READY BIT
JNZ WAIT;L00P TIL READY
IN 1 ; INPUT DATA

Looking at this program, we see that
the hardware interface was imple-
mented so that the status port "ready
bit" is "1" (sometimes called "high")
when no key has been pressed. There-
fore, when I input the status port, (IN
0), and "AND" it with a 1, I am
isolating just the single, rightmost bit of
the status port. If this bit is a 1, then the
Program Status bits will be set to not
zero, because the accumulator contains
a 1 after the ANI instruction.

Thus the JNZ instruction causes the IN
STAT to be executed over and over,

Lifelines, March 198228

of watching for an input instruction.
When it sees this, it puts the status or
data information into the computer.
This means that we cannot also have
memory at the same address as we have
our input or output device.

This is a rather minor drawback of
memory mapped input and output,
namely that it 'steals" some of the
memory addresses. Thus, in a typical
microcomputer which is capable of ad-
dressing 64K (65,536) bytes of informa-
tion, some block of memory is set aside
for addressing input and output de-
vices, therefore limiting our maximum
memory to some value, such as 60K.

Sample program for 8080
assembler programming tutorial

;Subroutine to input a line of
;data from a TTY to a buffer
>
;The routine calling "linput" must
jsupply the buffer address in HL,
;via an "LXI H" instruction

;The routine echoes all keyed characters
5
;A linefeed is automatically echoed after
;the carriage return is typed
>
;The following instruction "origins” or
;"starts” the assembly at 100 hex.

There is nothing which prevents the
8080 from using memory mapped in-
put and output. Several of the manu-
facturers of plug-in boards for the
popular S-100 computers use memory
mapped I/O.

0100

0100 ss
Now, let's tie in all the instructions 0100 CD1301
which we have learned, and code a
short program which inputs a LINE of
data from a keyboard, echoing every
character as it is typed, and stops when
the carriage return is pressed. At this
time, it echoes a linefeed, (so we don't
have to bother pressing it after the car-
riage return). This routine will be cod-
ed as a subroutine, i.e. a routine which
we can CALL. As an added conveni-
ence, the calling routine passes the ad-
dress of the buffer to be filled, in the HL

0103 CD1F01

register:

LXI H,BUFFER ;P0INT TO

0106
0107

77
23

; BUFFER
0108 FE0D

CALL LINPUT ;INPUT A LINE

I will use some abbreviations: C/R for
carriage return, L/F for line feed. I have
assembled this program at 100 (hex) so
you can become familiar with how an

010A C20001

assembly listing looks. (See the Listing 010D 3E0A
which follows this article.)

Next month, I'll cover the few instruc-
tions that haven't been seen so far, and
will begin showing lots of examples.

010F
0112

CD1F01
C9

Particularly, these examples will be 0113 DB00
useful in day-to-day CP/M program- 0115 E601
ming. 0117 C21301

9

ORG 100H
5
LINPUT EQU $;entry point
LOOP CALL KEYIN ;get a character

CALL TYPE ;echo the char
9

;Note that if ”’type” doesn't save the
;character, we would have to
9

; push psw
;and

; pop psw
9

;To keep the character for the C/R test
9

MOV M,A ;store in memory
INX H ;point to next

;loc in buffer
CPI 0DH ;is it C/R?
JNZ LOOP ;..no, loop

9

;We got a C/R, so echo the linefeed
;and return
9

MVI A,0AH ;get L/F char
CALL TYPE ;echo the L/F
RET 9 return to caller

;Subroutine to get a character from
;the keyboard

9

KEYIN IN 0 ;input status
ANI 1 jisolate
JNZ KEYIN ;loop not ready

(continued next page)

Lifelines, Volume II, Number 10 29

Full ASCII Keyboard
for Apple CP/M Matthew Von-Maszewski

pointed out that Videx produced a
board for approximately $125.00 that
did what my easy patch did and more.
Steve challenged me to copy the Videx
capabilities through software that he
could give away with Apples he sold.
This article details the comprehensive
patch that solves the above problems.

The patch accomplishes the following
functions to allow any UNMODIFIED
CP/M program to run on the Apple:

1. All ASCII characters are made
available at the keyboard. Some
require the pressing of the control
key and another key, but they are
all available.

2. All CONTROL characters remain
intact. The extra ASCII characters
such as { , [,} ,], rub and delete are
put on number keys and symbol
keys that normally have no CON-
TROL functions.

3. A software uppercase lock is
turned on and off through use of

To the delight of Apple II owners and
retailers, Microsoft created a Z80 card
and configured a CP/M for the Apple.
Microsoft's work opened up a whole
new area of software to the Apple IL
Unfortunately, the Apple II keyboard
does not have enough keys or support
logic to provide a full ASCII character
set to CP/M programs that require
one.

This problem was brought to my atten-
tion in two ways. First I tried to run
MicroPro's WordStar and Word-
Master that I copied from my S-100
CP/M computer to the Apple. The
24*80 video card in my Apple filtered
some of my control characters, never
letting CP/M see them. Also, due to
Microsoft's keyboard redefinition pro-
gram, some of the characters that did
not get filtered were changed. I had
found one way around this problem
when Steve Jenkins, manager of a
Dallas computer retail store, restated
the problem in a different way. He

Control 0 (Zero).
4. Characters are read directly from

the keyboard - not through the
video interface - to prevent any
characters from being filtered out.

Note: This patch only worked in
CP/M for full keyboard, but it does act
as the standard SHIFT key modifica-
tion for Apple-based software.

This patch eliminates the need for a
special Apple WordStar, or other soft-
ware modified for the Apple. In the
case of Apple WordStar, it simplifies
the elaborate key combinations that
MicroPro had to develop to enable
WordStar to run on the Apple, and it
opens the door for the Apple to use
other software (like WordMaster)
which has no special Apple version to
compensate for the limited keyboard.

The software patch requires the sup-
port of two wires in order to perform.
The first wire is the standard SHIFT
key modification that has been used on
the Apple for several years. The second
wire is a modification to the CON-
TROL key in the same manner as the
SHIFT key. This hardware costs less
than a dime, a sizable savings when
compared to $125.00!

The wires are added to the Apple in one
of two ways, depending on which revi-
sion keyboard your Apple has. All of
the later revisions have a second PC
board below the keyboard. Earlier
revisions do not have this second board
at all. One of the features of the second
board is a RESET protect switch that
allows the Apple to be reset only when
both the RESET key and the CON-
TROL key are pressed together. If your
Apple does not have this built-in
feature, you have the earlier revision
keyboard.

To modify the later revision boards:

1. Orient the computer with the
keyboard towards you and the
cover open.

2. Locate the 25 pins that connect the
keyboard to the second board at-
tached to it (not the big mother

Assembler Programming Tutorial (continued from previous page)
01 1A DB01
011C E67F
01 IE C9

IN 1 ;read data
ANI 7FH jdelete parity
RET

011F F5

5
;Subroutine to type a character.
;this routine preserves the char
;in a

TYPE PUSH PSW ;save the char

0120 DB00

>
;Loop, waiting for character ready
9

TWAIT IN 0 ;get status

0122 E680

9

;Note that the bit we isolate (80H)
;is different when testing to see if
;the output is ready:

9

ANI 80H ;isolate
0124 C22001 JNZ TWAIT ;loop not ready

0127 Fl

9

;The TTY is ready to accept the char.
9

POP PSW ;get the char
0128 D301 OUT 1 ;output it
012A C9 RET ;and return

Lifelines, March 198230

board that extends through out
the Apple case). Pin 1 is the left-
most pin (closest pin to the side of
the Apple with the power supply).

3. SHIFT key wire-Attach one end of
a wire to the second pin from the
right (pin 24). Run the other end
of the wire to the game I/O con-
nector (where you plug in the pad-
dles).

4. CONTROL key wire-Attach one
end of a second wire to the third
pin from the left (pin 3). Run the
other end of this wire to the game
I/O connector also.

To modify earlier revision boards:

1. The bottom plate of the Apple
must be removed and separated
from the shell to expose the under-
side of the keyboard. Orient the
shell with the keys down and
toward you.

2. The two wires must be soldered
onto the board as shown in the il-
lustration. The wires must be long
enough to reach the game I/O
connector when the Apple is re-
assembled.

3. Reassemble the Apple.

For both revisions the two wires must
be attached to the game I/O connector.
This can be done in two easy ways.
First, the bare ends of the wires may be
inserted into the socket holes. Second,
the wires may be soldered onto a
sixteen-pin dip header; the dip header is
then inserted into the socket.

The SHIFT key wire must be connected
to pin 4 and the CONTROL key wire
must be connected to pin 3.

The software part of this patch is added
to the CP/M system by way of Micro-
soft's CONFIGIO program that comes
with the Apple CP/M. After you have
entered the PATCH.ASM as listed, use
the CP/M assembler to produce a hex
file. Next the hex file must be converted
to a COM file. Finally the patch is mov-
ed into the CP/M. The detailed instruc-
tions follow:

1. Enter the PATCH.ASM using

2. Assemble the patch using the
following command
ASM PATCH.AAZ

3. If you have any errors during
assembly, edit them, and return to
step 2.

4. Translate PATCH.HEX to
PATCH.COM (note: this is not
an executable COM file) using this
command:

(continued next page)

PATCH.ASM 09/05/81 23:32

;Written by:

J
J
>
>
5

Matthew Von-Maszewski ,
Staley Computer Associates
P.O. Box 5189
College Station, TX 77840

> CP/M keyboard patch to allow control characters
> to get operating program without being
> filtered out by the 24*80 card.
>
> Note: those using a M&R Supe'R'Term need the
> 2.5 version of the ROM on the Card.
> This ROM can be attained from M&R
» or the author of this program.
»
> There should be no characters redefined under CONFIGIO.

We give you all of them. Beat that one
» Micro Soft.
»
i See accompaning text for hardware modification to
> to support this routine.

PATCH EQU 0F280H ;L0CATI0N OF PATCH
;placed in punch because tty area has
;stuff in it no one tells us about.
; gee thanks Micro Soft.

FALSE EQU 0
TRUE EQU NOT FALSE

SHIFT EQU TRUE ;KEYBOARD HAS MOD FOR SHIFT KEY ON SWITCH 2
SHLOCK EQU TRUE ;KEYBOARD HAS MOD FOR SHIFT LOCK ON SWITCH 1

0RG 100H
DB 1 ;N0 OF PATCHES
DW PATCH ;DESTINATION OF PATCH
DW LC2-LC1 ;LENGTH OF CODE
DB 1 ;PATCH TYPE 1
DB 2 ;PATCH VECTOR 2
DW PATCH ;WHERE TO SEND VECTOR

LC1 EQU $
BIAS EQU PATCH-$
LI: LDA 0E000H ;GET VALUE OF KEYBOARD

CPI 80H ;CHECK FOR HIGH BIT SET
JC L1+BIAS ;G0 BACK IF NO KEY
ANI 7FH ;STRIP OFF HIGH BIT
STA 0E010H ;TURN OFF KEYBOARD STROBE

IF SHIFT

if shlock
push b ;save this reg till later
mov b,a ;save the char
Ida flag+bias ;see if under shift lock
inr a ;test flag
mov a,b ;get character back
jz 12+bias J jump is shift lock
CPI 41H ;SEE IF CHAR IN LETTER AREA
jc 12+bias ;leave this section if not alpha
endif

if not shlock
cpi 41H ;see if char in letter area
jc 12+bias+l ;leave this section if not alpha
PUSH B ;SAVE THIS REG.
endif

MOV B,A ;PUT CHAR INTO B FOR SAFE KEEPING
LDA 0E063H ;GET PUSH BUTTON
ANI 80H ;STRIP OFF OTHER STUFF

Lifelines, Volume II, Number 10 31

LOAD PATCH
5. Execute the configure program:

MBASIC CONFIGIO
6. Go to section 2 of CONFIGIO,

keyboard redefinition, and delete
any redefinitions present. See the
Microsoft manuals (pp. 5-16,
Volume II in my manuals) for
details on CONFIGIO.

7. Go to section 3 of CONFIGIO,
load user patch. Read in the
patch, PATCH.COM. Again, see
the Microsoft manuals for how
CONFIGIO is operated.

8. Go to section 4 of CONFIGIO,
read/write system, and write the
current system with the patch out
to disk.

The patch is now present on the disk
and is active in current memory, so you
can immediately begin trying it out.
See the end of PATCH.ASM for the
table of what control keys produce
what.
In closing, this patch is available for
public use, but I reserve the right of its
use for sale. Should you wish to sell it
or provide it with computers you sell, I
reserve the right to give permission for
such use and to request proper com-
pensation.

Author's Note: If you do not wish to
type in the patch yourself, you can send
me $15.00 and I will send you a disk
with the software prepared to be added
to the system through CONFIGIO.
If you do not wish to modify your Ap-
ple yourself, there are several options
available. First, try taking this article,
along with your Apple, to your local
computer store; ask them to do the
modification. If this is not possible, try
to find someone capable of modifying
the Apple for you.

Cover Opening!

RRC jMOVE TO BIT 6
RRC jMOVE TO BIT 5
ORA B jDO THE STUFF

L2: POP B
cpi 40h ;check for wrong keys in
jz 14+bias ;make @ a capital P like it should be
cpi 5eh ;see if *
jz 13+bias ;make * a capital N
cpi 5dh ;see if]
jnz 15+bias ;nope: leave rest of characters alone

13: ani 4fh jfix for both M & N
jmp 15+bias jkitty fixed

14: mvi a,50h jnow a P
15:

ENDIF

IF SHLOCK
push psw jsave character
LDA 0E062H jGET PUSH BUTTON
RAL ;
jc 18+bias ;skip rest if control key is up
POP psw ;get the character

cpi 2dh ;check lower bound
jc 18+bias+l ;below what we are looking for
cpi 3bh ;check upper bound
jnc 18+bias+l ;above what we are looking for
cpi 30h ;see if shift lock
jz 17+bias jit is. jump

;translate area

push h jsave
Ixi h,table+bias ;get base of translate table
sui 2dh ;strip off unneeded ASCII
add 1 ;do offset
mov l,a jsave offset
jnc 16+bias jsee if a carry into h
inr h jadd 1

16: mov a ,m jget replacement value
pop h jrestore hl
jmp 18+bias+l jfinally finished

17: Ida flag+bias j
cma ’ jchange flag
sta flag+bias jput flag back in new state
jmp 11+bias jgo back for next char

flag db 0 jflag starts off (lower case)

table: ;character translate table
db 5fh jtranslate ctrl-= to rub (underline)
db 7fh jctrl-. to delete
db 5ch jctrl-/ to \
db 0 jshift lock gets intercepted
db 7ch jctrl-1 to |
db OOh jctrl-2 to Null
db 7eh ;ctrl-3 to ~
db 7bh ;ctrl-4 to {
db 7dh jctrl-5 to }
db 5eh ;ctrl-6 to *
db 60h jctrl-7 to '
db 5bh ;ctrl-8 to [
db 5dh jctrl-9 to]
db 4Oh jctrl-: to @

18: pop psw jget char back

endif

w
©

Q

z
Pa

rt
N

o.
 R

ev
. \

>

Q

©
O

RET
LC2 EQU $

Front

O Holes
©@ Screws

• Solder Pads

Lifelines, March 198232

dBASE*II, Version 2.3 Reported by Michael Olfe

(LIST, REPORT,SUM, etc.) perform positioning on both Pri-
mary and Secondary Databases.
SET COLON ON bounds GET data items with colons.
SET BELL ON makes bell ring on error condition.
SET ESCAPE ON allows escape character to abort.
SET EXACT ON requires complete match on string com-
pares.
SET INTENSITY ON Dual intensity used in full-screen
operations.
SET DEBUG ON makes output from ECHO and STEP go to
printer instead of console.
SET CARRY ON carries over data from previous record
when APPENDing records in full-screen mode.
SET CONFIRM ON suppresses a skip-to-next-field until a
control key is typed.
SET EJECT ON causes REPORT command to eject a page
before beginning report.
SET RAW ON places spaces between fields when DISPLAY
and LIST are used without fields list.

The following SET commands take strings or numbers as
parameters:
SET DATE TO mm/dd/yy sets system date.
SET INDEX TO <indexfile> [,< index file > , . . .] identifies
up to 7 index files to be used for future operations.
SET MARGIN to N allows user to control left margin in a
report.

6. Undocumented additions:

PEEK, Poke Read and write to any location in memory
CALL <memvar>
SET CALL to <memvar>

7. Error trapping

Judging from the large number of error messages listed in the
manual, there seems to have been a significant increase in the
amount of error trapping.

8. Changes to manual

The new manual includes tables of commands, organized
alphabetically and by function, a list of error messages, and
new examples and descriptions.

This version adds new features, extends many of the previous
features, and fixes some bugs in version 2.02. The integral
editor makes it possible to create and modify "CMD" files
from within "DBASE". In addition, several (as yet) un-
documented features are supported. "DBASE.COM" is now
18K compared to 16k for the previous version.

1. The install program now allows up to 11 characters for cur-
sor addressing and more characters for highlighting, allowing
a wider range of terminals to be supported. The standard in-
stallation menu includes Osborne, Apple, Adds Viewpoint,
Xerox 820, and HP2621.

2. There is a new command, BROWSE, which displays data
from up to 19 records on the screen, allows editing and scroll-
ing of the data.

3. New functions

FILE(< string exp>): evaluates to .TRUE, if file named
< string exp > is on the disk.
TRIM(< c s t r i ng>): removes t ra i l ing blanks from
< cstring >
TYPE(<exp>) : gives type of <exp> - character,
numerical, or logical

4. Extensions

@ < exp > , < exp > say < string > now allows < exp > to be
a numeric variable, unlike the previous version.
! is now allowed as a format character in GETs, converting
lower to upper case.
CLEAR GETS clears all pending GETs and leaves screen
intact.
DO CASE, CASE < exp > , OTHERWISE, ENDCASE allow
Pascal-like case statements instead of nested if-then-else con-
structs.
MODIFY COMMAND allows creation and editing of
"CMD" or any other text files.
PACK now automatically adjusts the index file.
REPORT [FORM < formfile >] PLAIN causes page numbers
and date at the top of a report to be suppressed.
USE < database > INDEX < indexfile > [, < indexfile > ...]
now allows up to 7 index files to be used with each database.

5. SET has many new parameters. The following "SETS" can
be On or OFF:
SET LINKAGE ON makes all sequential commands

Lifelines, Volume II, Number 10 33

WordStar Modifications for the
Epson MX- 1 00 Printer Bob Kowitt

The Epson line of printers lend themselves very well to word
processing with Micropro's WordStar if various of the
printers' functions are programmed into the WordStar
drivers.

The USER4 listing provided in the manual indicates the pro-
gram locations to be changed. In addition to altering the
running program, the on-screen print menu should be al-
tered, to reflect changes in the operation of WordStar.

I modified WordStar to run on my MX-100 printer. The
control codes for the MX-80 are different and a form of my
modifications may also be adaptable for other dot-matrix
printers. Substitute the control codes for your printer.

for condensed mode and two separate controls for the wide
mode. I settled for this inconsistency to permit using as few of
the controls as possible.

The other toggle commands on the left side of the menu in-
volve the reprinting of a line for underscore, strikeout, super-
script and subscript. Since the Epson does not backspace,
these commands cause a complete reprint of the line, so were
not available to me for my purpose.

It would have been preferable to have been able to use the
TPTB toggle provided by WordStar for the boldface (called
emphasized by Epson) but the Epson needs two separate
signals for emphasized-on and emphasized-off.

Since I did not want to sacrifice any more of the standard
WordStar printer controls, I decided to use USER1, USER3
and USER4 controls provided by the print menu. USER3 is
used for forcing 8 lines per inch and USER4 for returning to 6
lines per inch. USER1 is used for deselecting the paper end
detector to allow the printer to print on single sheets prop-
erly. Since I wanted, under normal circumstances to have the
paper end detector operable and the printer in the 6 lines per
inch mode, the WordStar end-of-print closing functions must
be modified to restore these modes.

The changes that I wanted were :

Print enlarged characters
WORDSTAR

MOD IF I CZtfAinr I ONS
Print condensed characters

A list of the aodif Rations.
Print boldface

To sum up the changes to be made:Print eight lines per inch

1 - Alternate character width -► expanded TPtA
2 - Standard character width -► normalize from wide TPtN
3 - Ribbon color change -► condensed (toggle) TPTY
4 - User (1) -> deselect paper end

detector TPTQ
5 - User (3) -* force 8 lines/inch tPTR
6 - User (4) -► force 6 lines/inch tPTE

This a block of copy
that is being printed
at eight lines per
i nch.

Print six lines per inch

And another block of
copy that is being
printed at the de-
fault of six lines
per inch.

The last three are set to normal upon ending the printing.

The first thing to be done is change the printer driver. After
this is proved to be working, the messages must be changed to
permit menu prompting. Use a copy from your master Word
Star disc that is already modified for your terminal.

Place a copy of DDT or SID on the B:drive and type:

B:DDT WS.COM

S690 (cr)

DDT will respond (and you enter the boldfaced values):

Turn off the paper end detector to permit single sheets.

The print option menu has two commands that were de-
signed to change printer characteristics from ten characters
per inch to twelve characters per inch. Since my printer does
not have a way to switch between these two pitches, I decid-
ed to change these Wordstar commands to allow a switch
between the standard width character and the enlarged
character produced by the Epson MX-100.

I wanted to be able to use toggle controls wherever possible.
The ribbon color change was one I could modify since I had
no ribbon color change ability on the Epson. This was an
ideal place to have a toggle between condensed mode and
normal. I realize there is an inconsistency in having a toggle

690 0 FF ;to send CR w/o LF for overprint
691 0 04 ;set to 4 strokes for bold
692 0 02 ;set to 2 strokes for double strike

S6B5 (cr)

34 Lifelines, March 1982

6B5
6B6

0
0

01
OE

;1 character for expanded set
;set expanded

6BA 0 01

S6BA (cr)

;1 character to reset expanded
6BB 0 14 ;reset expanded

6C9 0 02

S6C9

;2 characters for paper end
6CA 0 IB ;this is one
6CB 0 38 ; and the second

6D3 0 02

S6D3

;2 characters for 8 lines/ in.
6D4 0 IB ;this is one
6D5 0 32 ; and the second

6D8 0 02

S6D8

;2 characters for 6 lines/ in.
6D9 0 IB ;this is one
6DA 0 30 ; and the second

6DD 0 01

S6DD

;1 character for toggle
6DE 0 OF ;condensed type set

6E2 0 01

S6E2

;1 character for toggle
6E3 0 12 ;condensed type off

In order to change the print menu to reflect the changes made,
you must modify the WSMSGS.OVR overlay. If you have
the WordStar customization notes, you will find the appro-
priate areas and modify them according to instructions. Since
I did not have them, I modified the menu using DDT. The
area in WSMSGS.OVR that must be changed will be differ-
ent depending upon the version of WordStar you are using.
The following locations are for WordStar 3.0. If you are us-
ing a different version, search for the messages relating to the
changes to be made and substitute in the same manner.

It was necessary to make room in the print menu for the new
commands. The display of the other menus available is not
usually required and, if it is, can be checked elsewhere. All
the new commands will be prompted in this area.

The modification I used in Figure 3 is straightforward but I
want to call your attention to the modifications shown at lo-
cation 16D0H.

In WordStar 3.0, sections of the menus that are displayed in
either enhanced, reverse or altered screen in some manner.
These cha rac t e r s are filed as no rma l ASCII in
WSMSGS.OVR and before sending them to the screen, the
high bit is complemented to produce the alteration. There-
fore, to display a message in normal mode in this area, one
must have in the message file, a message with the high bit set.
When displayed, this is complemented to provide normal
display. For this reason, the sections of the menu that display
in normal mode must be changed with DDT, by finding the
message hidden in the file as a byte with the high bit set. That
is, if we want to find "A", we cannot look for 41H but must
find C1H. To find a space, normally 20H, we look for AOH.
(Make the alterations shown in Figure 3.)

Now translate the changes at 16D0H and you will find they
spell out:
--------------------------Printing Changes--------------------------

I also wanted to display the fact that USER1, USER3 and
USER4 of the options were no longer available, so I put them
in normal mode, as well, to contrast with the reverse display
my terminal uses. This line is changed at locations 18BFH
thru 18D1H inclusive. (See Figure 4.)

Save the new message file:

SAVE 112 WSMSGS.OVR

I hope you enjoy the result of these modifications. I know I
have. If you can think of any more, please let me know.

I want to put out a request for information about a method of
changing the 'dot' commands in WordStar. I would like to be
able to modify the lines per inch' with the .LH command.
The Epson MX-100 will allow line advance control in 72nd's
of an inch. If I could do that, I would not need two of the con-
trols used in this modification and could do something else
with them.

I can be reached in care of Lifelines: Bob Kowitt, c/o
Lifelines/The Software Magazine, 1651 Third Ave., New
York, N.Y. 10028.

See next page for Figures.

Printer conclusion settings:

S6F8

6F8 0 04 ;there will be 4 characters
6F9 0 IB ;lead in for paper end
6FA 0 39 ; selector on again
6FB 0 IB ;lead in for 6 lines/ in.
6FC 0 32 ; set on again

While I was at it, I decided to change the strikeout character
from a to a 7'.

S70B

70B 2D 2F ;changes - to / strikeout

Change the message that comes up on invoking WordStar by
using

DDT WS.COM
D1B0

Modify the file as in Figure 1 to display the Epson MX-100
sign on message. This completes the changes to WS.COM
and it must be saved to the disc:

SAVE 62 WS.COM

Lifelines, Volume II, Number 10 35

IB : WS.COM Figure 1
#R
NEXT PC END
7100 0100 AFFF
#D1BO, 1D5
01B0 : 20 OF 00 20 45 70 73 6F 6E 20 4D 58 2D 31 30 30
01C0: 20 77 2F 45 6E 68 61 6E 63 65 64 20 54 79 70 65
01D0: 20 20 20 20 20 OF ■

. . Epson MX- 100
w/Enhanced Type

Figure 2
IB : WSMSGS. OVR
#R
NEXT PC END
7100 0100 AFFF
#1
#D16D0, 1716
16D0: F3 AO
16E0: AD AD
16F0 : AO C3
1700 : AD 20
1710 : 6E 64

a o co o o '
a a w

 ci

AD AO 20 20
DO F2 E9 EE
AD AD AD AD
28 62 65 67
end)

20 7C 20 AD
F4 E9 EE E7
AD AD AD AD
69 6E 20 61

AD
AD
E l
20
65

. (beg in a

Figure 3
#D1720 , 17 AO
1720 : 74 69 6D 65 20 65 61 63 68 29 20 20 20 7C 20 41 t ime each) ! A
1730 : 7C 57 69 64 65 20 54 79 70 65 20 20 20 20 20 20 (Wide Type
1740 : 20 20 20 7C 20 51 20 4E 6F 20 50 61 67 65 20 45 ! Q No Page E
1750 : 6E 64 20 20 20 20 OE 20 42 20 42 6F 6C 64 20 44 nd . B Bo ld D
1760 : 20 44 6F 75 62 6C 65 20 7C 20 48 20 4F 76 65 72 Doub le ! H Over
1770 : 70 72 69 6E 74 20 63 68 61 72 20 20 20 7C 20 4E p r i n t char ! N
1780 : 7C 4E 6F 72 6D 61 6C 20 54 79 70 65 20 20 20 20 (No rma l Type
1790 :
17AO:

20
6E

20
n

20 7C 20 52 20 38 20 4C 69 6E 65 73 2F 49 ! R 8 L i nes / I

#D17E0 , 17F6
17E0 :
17F0 :

20
6E

20 20 7C
20

20
20

45
20

20
OE

36
n .

20 4C
•

69 6E 65 73 2F 49 I E 6 L i nes / I
2E 20

#D1810 , 1847
1810 : 74 6F 6D 20 73 70 61 63 65 20 20 20 20 7C 20 59 tom space ! Y
1820 : 20 43 6F 6E 64 2E 54 79 70 65 20 34 6F 67 67 6C Cond . Type Togg l
1830 : 65 20 20 7C 20 20 20 20 20 20 20 20 20 20 20 20 e :
1840 : 20 20 20 20 20 20 OE 20 a • ■

_i__

Figure 4

6C 69 6E
20 C5 AS
20 20 20

#D18B0 , 18E6
18B0: 65 72
18C0: DB B l
18D0: B4 DD
18E0: 20 20

20 7C 20 DI e rp r i n t l i ne ! .
A9 20 D2 DB . . . W(2)
20 20 20 20 . .O

 W
U

I
M

 ©
 O74

32
20
00

72
20
20
20

69
57
20
20

6E
28
20
20

20
29
20

70
DD
20
20

Lifelines, March 198236

A ieview of T/MA t i l — Part 3
Tablemaking with T/MAKER Raymond Sonoff

in a stripping away of the EXample
line, Zero Values (ZV) line, row and
column equations, and any other for-
mat information. Once TABLE-
NO#.CLN is completed, the PRINT
command will provide a hardcopy
printout if it is invoked. If there is no
need for storing this file, the SAVE
command can be omitted. These three
stages of table generation correspond
to Figures with suffixes of (a), (b), and
(c), respectively.

Engineering

The presence of expressions involving
exp(at) where a is a constant and t is
the parameter of time frequently ap-
pear in engineering computations.
Figures 1 (a),l (b),and 1 (c) provide il-
lustrations of how T/MAKER can be
utilized to perform such calculations
and place the values in a convenient
tabular format.

you will recognize that this region is
normally reserved for basic equation
symbols and column equation codes.
Whenever text precedes the actual
Table's EXample line, however, you
will have no problems even if you de-
sire to use any of the first seven col-
umn positions for text. Therefore,
TABLENO1.TXT can be "text" that is
an integral part of the overall file
TABLENO1.RAW during its initial
creation. When text material is en-
tered into any of the first seven col-
umn positions below the EXample
line, that information would be de-
leted when and if a CLEAN operation
occurred.

This article describes some of the fea-
tures of T/MAKER II that might be
used to create tables. Recall that
T/MAKER stands for Table MAKER
and that text editing operations can be
included as part of the data calculation
capabilities of this software product.
(See previous reviews in Lifelines
January 1982/Vol. II, No. 8 and Feb-
ruary 1982/Vol. II, No. 9 issues for
additional details.) Examples of table
generation involving engineering and
business applications are given. Ob-
servations, assessments, and some
personal opinions regarding the appli-
cability of T/MAKER II to various
tasks attempt to close out this review
series.

How T/MAKER accomplishes its op-
erations according to associated sym-
bols will be illustrated by presenting
three Figures for each example: a) the
initially CREATEd Table; b) the
COMPUTEd Table; and c) the
CLEANed final Table. These will be
labeled TABLENO#.RAW, TABLE-
NO#. CPT, and TABLENO#. CLN,
respectively.

T/MAKER command sequences for
these respective files to be produced
and stored would be : CREATE
TABLENO#.RAW EDIT SAVE; RE-
NAME TABLENO#.CPT COMPUTE
SAVE; and RENAME TABLE-
NO#.CLN CLEAN SAVE. Once the
initial table is generated and stored,
the COMPUTE function would be in-
voked. The first operation that is done
automatically by this function is align-
ment of each column's raw data
decimal points according to the Exam-
ple line which must always precede
data line computations. The positions
of the "9's" fields defines the width of
each column, and only numbers and
symbols that lie within those column
positions will be processed during a
COMPUTE operation. Note that as-
sociated formatting, equations, and
symbols remain as part of the SAVEd
TABLENO#. RAW and TABLE-
NO#.CPT files, whereas invoking of
the CLEAN function as an operation
to be performed on the COMPUTEd
file, namely TABLENO#.CPT, results

Lifelines, Volume II, Number 10

Final Comments

I have found T/MAKER II to be a
wonderful software tool. It is forgiv-
ing in its calculations; it lets you know
where you are in a "sea" of rows and
columns via INFO (or ESC ? when in
EDIT mode) commands, and you can
keep only the files you desire, along
with any supporting text you wish to
include.

Having spent a considerable amount
of time with this product, what do I
recommend you do if you should de-
cide to purchase T/MAKER II? Fore-
most of all, spend the time reading
every single page of the manual,
working every single example that is
there. I made some rather simple er-
rors during my indoctrination period,
and these would have been minimized
if I had simply plodded through every
example provided in the manual. Sec-
ond, experiment! Try various pro-
gramming arrangements to see what
seems to work best for you. I have
plenty to learn still!

T/MAKER II has shortcomings as of
this review time. This includes inabil-
ity to present information in exponen-
tial notation, the need to essentially
become intimately familiar with a Re-
verse Polish Notation-like calculation
system: there are no parentheses in-
volved, as there are for algebraic oper-
ating systems. Finally, you will have

(continued next page)
37

Business

Both small and large business enter-
prises desire to have sales projections
information readily at hand. How
T/MAKER can be used to provide
sales projections calculations is clearly
illustrated in Figure 2 (c).

The first question you will probably
ask when seeing Figure 2 (c) is, "How
did all those numbers get generated,
and what steps had to be performed to
reach that point?" By first examining
the initial TABLENO2.RAW file of
Figure 2 (a), you will quickly become
appreciative of the various associated
formatting and equation codes that re-
sult in generation of Figures 2 (b) and 2
(c). Figure 2 (b) is discussed as an ex-
ample of COMPUTE on one panel of
the Quick Reference Card (QRC) that
accompanies the T/MAKER II 3-ring
binder manual. This example provides
an excellent demonstration of how
much analysis can be performed on
even a minimal amount of data.

The number string 1234567 shown
preceding Figure 1 (a) is present so that

to get used to some cumbersome key-
stroke sequences (unless you want to
redefine some of them).

Overall, I would rate this product as
an excellent "assistant" for all types of
report generation and calculations. Of

course, if you need do only a simple
calculation, such as could be done on a
four-function calculator, don't bother
with setting up the T/MAKER. How-
ever, if you will be doing rather fre-
quent data manipulations, forecast-
ing, or engineering calculations, it

sure beats writing programs in
BASIC. Good luck!

(Editor's Note: See the New Version
report on Version 2.51 of T/MAKER
II, released just as Lifelines went to
press.)

TABLENO2.RAW
Sales Projections

1978 1979 1980 Total Growth 1981 1985
(000) Rate

ex 999,999 999,999 999,999 9,999.9 99.9 999,999 999,999
zv ___
acl + + + = -
ac2/ 1000
ac3 - * + grw
uc4 + prj + ++++
uc5 rnd rnd

++ Store A 12,345 13,679 17,567
++ Store B 21,345 20,145 19,134

TABLENO1.TXT
1234567(blank leading spaces)

Deflection of an electron beam in an oscilloscope is
expressed by the equation for sweep. For a particular CRT,
the sweep equation is given by:

6
D (t) - 15.6 exp (-0.342 x 10 t)

where D is a function of time and is expressed in inches
and t is expressed in microseconds .

Determine the electron beam deflection for times of 0, 0.20,
0.40, 0.62, 0.86, and 1.13 microseconds.

TABLENO1. RAW

Time, t, (at) exp(at) [1 - exp(at)] Deflection,
microsec. (a—0.342) in.

1234567
ex 9999.99 9,999.999 99.999 99.999 99.999
zv zero .0 0. 0.0 nil

acl + “
ac2* -0.342
ac3 + exp

ac4 + sfo
ac5 +
ac6* 15.6
+ 0
+ 0.20

+ 0.40
+ 0.62
+ 0.86

=// Total

ex 9999.99 9999.99 9999.99 , ,999.9 99.9 9999.99 9999.99
+Z Pct. Store
+ Z Pct. Store

Total

Figure 2(a)

TABLENO2.CPTFigure 1(a)
Sales Projections

1978 1979 1980 Total Growth 1981 1985
(000) Rate

TABLENO1.CPT ex 999,999 999,999 999,999 9,999.9 99.9 999,999 999,999
zv — — — — — — —
acl + + + — - -
ac2/
ac3
uc4

- *
+

1000
grw
prj Illi

uc5 rnd rnd

[1 - exp(at)] Deflection,
in.

99.999 99.999
0.0 nil

Time, t, (at) exp(at)
microsec. (a—0.342)

1234567
ex 9999.99 9,999.999 99.999
zv zero .0 0.

acl + ”
ac2* -0.342
ac3 + exp

ac5
ac6*
+ zero .0 1.000

+ 0.20 -0.068 0.934
+ 0.40 -0.137 0.872
+ 0.62 -0.212 0.809

+ 0.86 -0.294 0.745
+ 1.13 -0.386 0.679

Store A 12,345 13,679 17,567 43.6 19.3 20,956 42,434
Store B 21,345 20,145 19,134 60.6 -5.3 18,116 14,557

-/ / Total 33,690 33,824 36,701 104.2 4.4 39,072 56,991

ex 9999.99 9999.99 9999.99 , ,999.9 99.9 9999.99 9999.99
+Z Pct. Store 36.64 40.44 47.87 14.3 53.63 74.46
+ Z Pct. Store 63.36 59.56 52.13 -9.3 46.37 25.54

- Total 100.00 100.00 100.00 100.00 100.00

sfo

15.6
0.0 nil

0.066 1.031
0.128 1.995
0.191 2.981
0.255 3.975
Q. 321 5.000

Figure 2(b)Figure 1(b)

TABLENO2.CLN
Sales Projections

TABLENO1.CLN

1978 1979 1980 Total
(000)

Growth
Rate

1981 1985

Store A
Store B

12,345
21,345

13,679
20,145

17,567
19,134

43.6
60.6

19.3 20,956
18,116

42,434
14,557

Total 33,690 33,824 36,701 104.2 4.4 39,072 56,991

Pct. Store
Pct. Store

36.64
63.36

40.44
59.56

47.87
52.13

14.3 53.63
46.37

74.46
25.54

Total 100.00 100.00 100.00 100.00 100.00

Time, t, (at) exp(at) [1 - exp(at)] Deflection,
microsec. (a"-0.342) in.

zero .0 1.000 0.0 nil
0.20 -0.068 0.934 0.066 1.031
0.40 -0.137 0.872 0.128 1.995
0.62 -0.212 0.809 0.191 2.981
0.86 -0.294 0.745 0.255 3.975
1.13 -0.386 0.679 0.321 5.000

Figure 1(c)

Figure 2(c)

Lifelines, March 198238

PA. 'IC Fu ine Functions James E. Korenthal

This article presents a rationale for making extensive use of
Microsoft BASICs powerful DEF FN facility in certain busi-
ness programming situations, and gives some examples of
functions that I've recently employed to great advantage.
Sorry if I've misled you... but you've got to admit, "BASIC
Business Functions' is gonna look a helluva lot better on my
resume than "Hacker's Guide to DEF FN capabilities.' You
might say I'm "entitled.' (. . .bored already? Thinking of turn-
ing the page? Too bad - I guess you're not interested in win-
ning a ZX-80... Read on...)

Okay, down to business. First of all, why are we using
BASIC, anyway? Because it's the most highly structured,
elegant language around? Because it's faster than a speeding
bullet? If either of these reasons apply to you, skip to the next
article, entitled "IBM 1620 Fundamentals."

The most common reason for using BASIC (assuming, of
course, that it's not the only language you have on your
micro) is BASIC's interpretive nature, and the inclusion of an
"environment" in most BASIC implementations. This means
that a consultant can sit down at his terminal and create, edit,
monitor, debug, and finalize a well-documented program
without ever leaving BASIC. I'm assuming, of course, that
he's using a BASIC interpreter like MBASIC, not a compiler
like BASCOM.

Now - if we're talking about an interpreter, what does this
say about execution speed? Simply that we don't care very
much about it! Sure, well write our program in such a way
that the user doesn't sit for hours staring at a blinking cursor,
but when push comes to shove, a few extra seconds of execu-
tion time don't mean diddly . This is especially true in business
programming, where most functions are I/O bound (mean-
ing that most of the computer's time is spent fiddling with
peripherals, rather than doing actual number crunching).

A brief digression is in order here, about a common program-
mer's disease called "one-liner syndrome." Here's how this
malady works: you spend a considerable amount of time de-
veloping a single line of code which does something really im-
pressive. You then challenge all your friends to do the same
thing in the smallest amount of code. Since they don't know
you've done it in one line, they come back with three or four
lines of code. You then get a chance to smugly show them
your one-liner, thus proving beyond a doubt that you're the
smartest kid on the block. The obvious beneficial effect of
this activity is that you lose your friends very quickly, thus
gaining valuable time needed to develop more one-liners.

Okay - what does all this have to do with using and abusing
the DEF FN statement? The important thing to realize is that
one- liner syndrome is a very dangerous programming prac-
tice. It's certainly fun, and sharpens your programming
skills, but tends to produce code which is very hard to debug
(even by you), and often runs slower than its multi-line
equivalent (because of the contorted logic you need to use to

Lifelines, Volume II, Number 10

accomplish the most in a single line). My point is that defined
functions in interpretive BASIC are the single exception to
this rule. This is because speed often isn't a major factor in
business programs run under an interpreter (as discussed
above), and as far as debugging goes, once the function is
written, you use it the same way you use an assembler routine
- just make sure it's adequately documented, and you can
transfer it from program to program with great savings in
development time.

Microsoft BASIC provides powerful tools for this type of
function definition. You can include as many arguments as
you like in a function, and most importantly, the arguments
(and the function itself) may be character strings. You can
also refer to other functions and "global' variables (that is,
variables other than the function's arguments) within the
function. This doesn't quite give you the power of multi-line
functions, but you'd be surprised at what a single DEF FN can
give you if you exercise a little creativity.

Without further ado, here are a few functions which you
might find useful.

DEF FNROUND(X) = INT(X + 0.5)

This function rounds its argument off to the nearest integer.
Microsoft BASIC version 5 will do this for you whenever you
assign a floating point value to an integer variable.

DEF FNROUND2(X,N) = INT(X 1 10TN + 0.5) * 10TN

This will round X to the N'th dec imal p lace . So
FNROUND2(X,0) is the same as FNROUND(X) ,
FNROUND2(X,2) rounds to the nearest hundred, and
FNROUND2(X,-1) rounds to the nearest tenth. When using
this and other numeric functions, bear in mind that they don't
check for BASIC's precision limitations.

DEF FNROUND$(X) = STR$(INT(X + 0.5#))

Here's our first string function. It does more or less the same
thing as FNROUND(X), except the result is returned in a
character string. Also, "0.5#' is expressed as a double-
precision constant to give us added accuracy of result. This,
of course, is at the expense of execution speed, since extra
conversions are taking place.

DEF FNROUND2$(X,N) = STR$(FNROUND2(X))

Assuming we've defined FNROUND2 as above (make a simi-
lar assumption in all examples below), this function returns
the same result in a string. It's an example of building func-
tions using stuff we've already defined.

(...keep reading, we'll get to the ZX-80...)

DEF FNV(R$,S,L) = VAL(MID$(R$, S, L))
(continued next page)

This function is intended as a documentation aid in business
programs. It is intended for use when were processing data
file records, and must extract numerical values from arbi-
trary points therein. It's not always effective to use the FIELD
statement for this purpose, especially when we have many
complex record types intermixed in the same file. The func-
tion extracts a string from R$, starting at S for length L, and
returns its numerical value. When used in a program, its use
might look like this:

ON FNV(EMPLOYEES, STATUS, 2) GOTO 100, 200, ...

Note that the VAL function will not perform any error check-
ing, so be VERY sure that the data that FNV processes is
numeric.

DEF FNJUST$(A$,L) = RIGHT$(SPACE$(L) A$, L)

This function will right-justify a character string in a field of
length L. It is most useful in combination with other func-
tions, and produces much more compact source code than
can be obtained with the RSET statement.

DEF FNV$(X,L) = FNJUST$(FNROUND$(X), L)

Here we have the complementary function to FNV. This
function takes a value and a field length, and returns a right-
justified, rounded value, ready to be placed into a data record
which doesn't use FIELD statements.

DEF FNS2$(X) = MID$(FNROUND$(X), 2)

This is a utility function for FNS (defined below). It returns
the rounded value of X as a character string, leaving out the
leading space or minus sign (Remember that STR$(57) =
"b57", where "b' represents a single space).

DEF FND(D$) = (FNV(D$,7 ,2) - BASE) * 24

+ (FNV(D$,1 ,2) - 1) * 2

- (FNV(D$,4 ,2) >= 15)

This function was developed for a Credit Line Maintenance
system which handled payables in semimonthly periods. The
first period for each month was from the 1st to the 14th, and
anything thereafter fell into the second period. A base year
was defined as a two-digit number (i.e., "80") before FND
was used in the program. The purpose of this function is to
convert a date in "mm/dd/yy" format to a number which in-
dicates the number of periods that have elapsed since January
1st of the base year. This makes complex date calculations
(which were performed all over the program, in order to han-
dle multiple credit lines with differing characteristics) quite
simple.

The function first gets the year's value (FNV(D$,7,2)), sub-
tracts the base year to determine the number of years elapsed,
and multiplies by 24 to get the number of elapsed periods un-
til January 1st of the indicated year. Then the month
(FNV(D$,1,2)) is adjusted down (to get 0-11) and doubled,
because there are two periods in every month. We add this
value in to get the number of elapsed periods until the first of
the indicated month. The last component is the most interest-
ing: We get the day ("FND(D$,4,2)") and compare it to 15. If
the day was less than 15, "(FNV(D$,4,2) > = 15)" will
equal zero, so our partial result will stand. Otherwise,
"(FNV(D$,4,2) < = 15)" will equal — 1, so subtracting this
from our partial result will cause the result to be incremented,
to indicate a period in the second half of the month.

(...we're almost there...)

DEFFNDM$(D) = RIGHT$(STR$(101 + (DMOD24)/ 2), 2)

We're now developing the complementary function to FND,
in stages. FNDM$ takes a period number (computed by
FND), and returns a 2-character string consisting of the
month represented by the indicated period. "(D MOD 24)"
gets rid of the year information in D. We then integer-divide
by 2 to get a month number from 0-11. Adding 101 accom-
plishes two things: The 1 is added to adjust the month back to
1-12, and we add 100 to make sure that we get a zero in the the
next-to-last digit for months 1-9. We then take the last two
characters of the string value to get our final result.

DEF FNDD$(D) = RIGHT$(STR$(101 + 14 * (D MOD 2)), 2)

This function returns a 2-character string containing the first
day of period D. "(D MOD 2)" returns 0 for the first period in
each month, and 1 for the second period. We multiply by 14
to get 0 for the first period and 14 for the second. We then
proceed as in FNDM$ to get either "01" or "15."

DEF FNDY$(D) = RIGHT$(STR$(100 + BASE + D \ 24), 2)

Here's the year function. We integer-divide the period by 24
to get the number of years elapsed. This is added to our base
value (described above). 100 is added to take care of leading
zeros, and we then extract the trailing two characters of the
result.

DEFFND$(D) = FNDM$(D) + 7" + FNDD$(D) 4- 7" + FNDY$(D)

DEF FNS$(X,L) = FNJUST$(MID$("<b” , 2 + (X < 0) , 1)

+ FNS2$(X)
+ MID$(”>b”, 2 + (X < 0) , 1)

, L)

Whew! And you thought they were all gonna be easy! This
function was developed for an application where negative
numbers had to be surrounded with angle brackets, and all
numbers had to line up in columns whose lengths were to be
specified at execution time. Clearly, "PRINT USING" would
be cumbersome here, and anyway, the columns had to be
stored in text form on disk. Here's how the function works:

First of all, look at the FNS2$(X). This gets us the absolute
value of X (rounded to the nearest integer) in a character
string with no surrounding spaces. The MID$ functions sup-
ply angle brackets or spaces (read "b" as blank in this func-
tion) like this: if X is negative, then Microsoft BASIC will
return —1 for the expression "X < 0." Thus, "2 + (X < 0)"
will equal 1, so the first MID$ will return " < " and the second
will give " > If X is positive or zero, "X < 0" will be zero, so
"2 + (X < 0)" will equal 1, and both MID$ functions will
yield a space. We surround FNS2$(X) with both MID$'s, and
then send the whole mess through FNJUST$ with field length
of L to get a nice, neat, columnar result. Pretty impressive for
BASIC, no?

Lifelines, March 198240

They must be postmarked no later than three days and four
hours before the final judging date, which will be whenever I
feel like it (let's say about 2 months). Entries will be judged on
the basis of three factors (yet to be determined) by a com-
pletely subjective judging organization consisting of yours
truly.

The prize: A SINCLAIR ZX-80 KIT!!!

That's right, folks, we're talking about the original ZX-80 kit,
not this new-fangled ZX-81 baloney. The kit is in its original
box (if I can find it), and I'm pretty sure it's complete (all I did
was look at it - honest!)

The catch: I get to publish any and all entries in a future arti-
cle or articles. All authors will be credited in the article(s), but
only one ZX-80 will be awarded. Happy one-lining!

This function puts everything together by constructing an
8-character string in mm/dd/yy format. It doesn't look that
bad in this form, but consider the full definition without the
use of auxiliary functions:

DEF FND$(D) = R I GHT$ (STR$ (101+(D MOD 24) \2) , 2)+ ’7 "

+RIGHT$(STR$(101+14*(D MOD 2)) , 2)+” / ”

+R I GHT$ (STR$ (1OO+BASE+D \ 24) , 2)

This is perfectly legit... It's just a lot harder to read!

DEFFNZ(P) = P * - (P > = 0)

This is an example of doing simple conditionals through func-
tions, rather than IF statements. It returns zero if P is
negative, and P if P is positive. For example, consider the
following segment of code which produces a simple graph:

100 FOR J=1 TO N

110 PRINT A (J) ;
120 K = 20

130 IF A(J) >= 0 THEN K = K + A(J)

140 PRINT TAB(K);
150 NEXT J

Given the above definition for FNZ, we could rewrite this
code as follows:

100 FOR J=1 TO N

110 PRINT A(J) ; TAB(20 + FNZ(ACJ))) ; "*"
120 NEXT J

This approach, while succinct in terms of source code, will
almost always cause your program to execute more slowly.
In other words, use the technique sparingly.

Well, I hope I've given you some ideas about using BASIC
functions in new ways. If you come up with any really neat
functions that you'd like to share with other Lifelines readers,
send them to me care of this magazine. I'll put together a
follow-up article, thus obtaining fame, glory, and riches
beyond imagination (well, two out of three ain't bad) for
those who submit the best functions.

(...AND HERE WE ARE!)

Still got a terminal case of one-liner syndrome? Defining neat
functions doesn't quite do it for you? Okay, bunky, have I
got a contest for you! For want of a better name, well call it
the
"OKAY, ALREADY, I'LL GET SOME
OF THE JUNK OUT OF THE HOUSE" contest.

Here's how it works:

Rule 1: Stay up all night and develop the best Microsoft
BASIC (Version 5) one-liner you can. Any night
will do.

Rule 2: Send your entry, along with a description of
what the one-liner does, to me care of this
magazine.

All entries must be independent of the terminal that is used.

Change of Address
Please notify us immediately if you move. Use the
form below. In the section marked “Old
Address’’, affix your Lifelines mailing label — or
write out your old address exactly as it appears
on the label. This will help the Lifelines Circulation
Department to expedite your request.

New Address:

NAME

COMPANY

STREET ADDRESS

CITY STATE

ZIP CODE

Old Address:

NAME

COMPANY

STREET ADDRESS

CITY STATE

ZIP CODE

Lifelines, Volume II, Number 10 41

An Overview of CB80 Bill Burton

About CB80

CB80 was first released last September by Compiler Systems,
Inc. as an upwardly compatible adjunct to [their] CBASIC.
CBASIC is a reliable and widely accepted pseudo-compiled
language which has been used successfully in a variety of
commercial applications. Nonetheless, some users have com-
plained about CBASIC s slow execution. By contrast, CB80
is a true compiler which produces much faster code than
CBASIC while offering several useful extensions. Note:
Compiler Systems has since been acquired by Digital
Research, Inc. Presently, CBASIC and CB80 are Digital
Research products.

Last July, prior to CB80's release, I attended a seminar in
Pasadena, hosted by Compiler Systems. One of the major
purposes of this seminar was to introduce CB80 to authors
and vendors of CBASIC application software. Preliminary
specifics of CB80's design and performance were discussed at
length by Gordon Eubanks, the author of CBASIC and
originator of CB80, and by Paul Lancaster, whose expertise is
evident in many of CB80's optimizations.

As described during the seminar, the design goal of CB80 was
a true compiler, largely source compatible with CBASIC,
which would typically require less [compile and linkage] time
to produce smaller and faster programs than functional
equivalents created by either Digital Research's PL/I-80 or
Microsoft's BASIC-80 compiler. Obviously, this would
translate to huge improvements over CBASIC's perfor-
mance. At the conclusion of this review, I shall comment on
how well CB80 has fulfilled the ambitions of its designers.

The CB80 Programs

libraries such as BASLIB.REL and FORLIB.REL (of Microsoft
BASIC and FORTRAN) is generally a slower process involv-
ing considerably more disk activity.

CBCK (called CK80 in some releases) is described in the licen-
sing guide rather than the manual and its purpose is
somewhat unclear at this point. CBCK checks the integrity of
the files on a diskette and is also intended to simplify making
patches to CB80 programs. Should this be required, further
information will be provided.

Conspicuously absent from the CB80 disk is XREF.COM, the
cross reference utility, included with CBASIC. CB80 users
who have access to copies of CBASIC may use XREF but this
may produce confusing results unless their CB80 programs
are written entirely in a CBASIC compatible command
subset. Those converting from CBASIC to CB80 should be
able to use XREF without problems. Still, XREF should be be
rewritten for use with CB80 and added to the package in the
near future.

RMAC and M80 are two of the most popular and capable
macro assemblers currently available. These are included as
part of PL/I-80 and the BASIC-80 compiler packages respec-
tively. CB80 does not yet include a companion assembler nor
does it include a library manager. I feel that a high level
development tool such as CB80 should include both.

Using CB80

The CB80 compiler produces relocatable modules from
ASCII source programs. One or more relocatable modules
are linked with the CB80 library to form an executable pro-
gram or optional overlays.

The example below illustrates the simplest case of using CB80
to produce executable code from an ASCII source program,
'test.BAS'.

CB80 consists of the following programs:

(6K) - Main Compiler Module
(13K) - Compiler Overlay # 1
(13K) - Compiler Overlay # 2
(16K) - Compiler Overlay # 3
(20K) - CB80 Support Library

(6K) - CB80 Linking Loader
(10K) - Check/Patch Utility

CB8O.COM
CB80.OV1
CB80.OV2
CB80.OV3
CB80.IRL
LK8O.COM
CBCK.COM

Input file
User enters
Producing
User enters
Output file

: test.BAS
: CB80 test
: test.REL
: LK80 test
: test.COM

Overlays are required if a program will CHAIN to other pro-
grams. The procedure requires compiling a root' program
with one or more overlay programs. Root programs are
typically menu programs or programs which initialize COM-
MON storage and then chain to a menu. Let us consider the
more complex case of compiling and linking 'test.BAS' and
two overlay files, 'tl.BAS' and 't2'.BAS.

Input files : test.BAS, tl.BAS, t2.BAS
User enters : CB80 test, CB80 tl, CB80 t2
Producing : test.REL, tl.REL, t2.REL

The first four of these modules function as a reasonably effi-
cient three pass compiler. Error detection and reporting is im-
pressive. It is quite easy to isolate source code errors from the
compiler output. The linking loader is remarkably fast.

It is important to note that the CB80 library has been im-
plemented as an indexed relocatable [IRL] file. This arrange-
ment, similar to that of PL/I-80, allows selected routines to be
linked without requiring the entire library to be searched se-
quentially. Linking compiled code to standard relocatable

Lifelines, March 198242

All CBASIC programs have the form, 'filename.INT' and all
CHAINS in CBASIC are to INT type files. CB80 requires a
'root' program, 'filename.COM' and, optionally, one or
more overlay programs, 'fnamel.OVL', 'fname2.OVL' etc.
When converting CBASIC programs to CB80, INT filename
extents will have to be changed to either COM or OVL.

In rare cases, FOR-NEXT loops may cause conversion pro-
blems. Most BASICs, including CBASIC, do not evaluate
FOR-NEXT until the loop has executed at least once.

FOR 17. = 1 TO -1
PRINT 17.
NEXT 17.

Most BASICs will print a T on the screen when executing
these lines. CB80 will not display anything. Although this ex-
ample might seem to point out possible compatibility pro-
blems, CB80 should not be faulted. The logic of FOR-NEXT
loops should be evaluated before they are entered.

CB80 implements all of CBASIC's commands except for FILE
and SAVEMEM. The function of the FILE command may be
synthesized as follows:

IF SIZE (FILENAME$) <> 0 \
THEN OPEN FILENAME$ AS FILE.NOZ \
ELSE CREATE FILENAME$ AS FILE.NOZ

SAVEMEM is used in CBASIC to reserve space in memory
for assembly language routines. This command has no mean-
ing in CB80 because the location of assembly language
routines is assigned by the linking loader.

CBASIC allows a single identifier to be used as both a simple
and subscripted variable name in the same program.

DIM (AZ) 10
AZ (1) = 10
AZ = 100

This is valid in CBASIC but it will produce a fatal CB80 com-
piler error. Again, this seeming restriction obliges program-
mers to write more logical and readable code and should
therefore be considered a design improvement.

Strings in CBASIC are restricted to 255 characters. CB80
allows strings up to 32K. For this reason, CB80 requires an
extra byte for internal representation of string lengths. To
avoid logical errors, CBASIC code in which the SADD func-
tion is used with PEEK and POKE to pass strings to assembly
language routines will have to be rewritten.

CBASIC
LENZ = PEEK (SADD(STRING$))

CB80
LENZ = (PEEK (SADD(STRING$)) AND 07FH \

+ PEEK (SADD(STRING$) + 1)) * 256

CB80's READ and INPUT statements handle integers dif-
ferently. In CBASIC, all numeric values are accepted as real
quantities and converted to integers when required. CB80 ac-
cepts integers directly but stops conversion at the first non-

(continued next page)

User enters : LK80 test (tl) (t2)
Output files : test.COM, tl.OVL, t2.OVL

Up to forty overlays may be linked to a root module by a
single command line.

Converting CBASIC Programs

Addenda to the CB80 manual document the few known areas
of incompatibility. Included in the addenda pages is a promi-
nent warning concerning use of the 'POKE' command,
especially POKEs to location 110H, (which adjusts CBASIC's
console width).

CB80 assumes infinite console width when executing PRINT
statements terminated by a comma or colon. Carriage return
linefeed sequences are not generated automatically when
assumed console width has been exceeded. This change has
been implemented to facilitate direct cursor addressing.
Wherever this change may cause problems, the POS state-
ment can be used. For example:

CBASIC
FOR 1% = 1 TO 1000
PRINT 17.,
NEXT 1%

CB80
FOR I7o = 1 TO 1000
PRINT IZ,
IF POS > 64 THEN PRINT
NEXT 1%

Owing to the increased speed with which CB80 performs in-
teger operations, integer timing loops written for CBASIC
will not produce adequate delay. For example, a CBASIC
program might display a message on the screen for a few
seconds like this:

PRINT "THE MESSAGE"
FOR IZ=1 TO 1000
NEXT 17.
••• clear the screen - print new message

CB80 would also print the message but to the eye it would ap-
pear only as a glitch on the screen. CB80 code to replace this
CBASIC timing loop might appear as follows:

PRINT "THE MESSAGE"
FOR JZ=1 TO 50 \ Real values can be used
FOR IZ=1 TO 1000 \ instead of nested loops
NEXT 17.
NEXT J7.
... clear the screen - print new message

Note that the two NEXT statements in the example above
must appear on separate lines (this was not a requirement of
CBASIC). This restriction encourages the programmer to in-
dent, nested loops for clarity, and as such should be con-
sidered a design improvement.

The CHAIN statement introduces a minor incompatibility.

43Lifelines, Volume II, Number 10

integral character.

DATA 10 .7 , 1E2
READ A7o, B7

After this READ statement had executed, the values of A%
and B% would be:

CBASIC CB80

AZ = 11 AZ = 10
BZ = 100 BZ = 1

CB80 uses a signed binary value to represent the amount of
free memory returned by the FRE statement. This will result
in a negative value if there are more than 3T767 free bytes.

CB80, The New Features

CB80 supports alphanumeric labels which may be used in-
stead of line numbers to increase program readability. For ex-
ample:

CBASIC
GOSUB 19003

CB80
GOSUB UPDATE. CLIENT. HISTORY.FILE:

To some degree, use of alphanumeric labels can make a pro-
gram self-documenting, thereby reducing the number of
remarks needed to clarify program logic. Note that CB80 re-
quires a colon as the last character of an alphanumeric label.

Variable types may be declared at the beginning of a pro-
gram. In some cases this allows a functionally identical pro-
gram to be entered with many less keystrokes because, once
declared, integer and string variable references need not be
followed by a type identifier, (string$ or integer %).

CB80 programs written for MP/M will likely require use of
CB80's LOCK and UNLOCK commands to supervise file ac-
cess. LOCK and UNLOCK dictate whether multiple users can
share the same file and also prevent multiple users from at-
tempting to update the same record simultaneously. In CB80,
files are assumed locked if opened with the CREATE state-
ment and unlocked if opened with the OPEN statement.

The ATTACH statement returns -1 (logical True) if a printer
is attached.

TRUEZ = -1 : FALSEZ = NOT TRUEZ
ATTACH (log i ca l . p r in t . dev i ceZ)
IF ATTACH THEN GOSUB HARDCOPY. ROUTINE

CB80 allows IF statements to be nested.

IF I < J THEN \
IF K > L THEN \

X = 3 \
ELSE \ th i s ELSE matches s econd IF

Y = 2

Some CBASIC users will probably be delighted that this
feature is finally available. Personally, I feel that using nested
IF statements makes code less readable.

Almost anyone who has used the newer Microsoft BASICs
will be pleased to know that MOD, INKEY and ON ERROR
(with ERR and ERRL) have been implemented in CB80. Also,
PUT and GET allow binary data to be written to or read from
files, a single byte at a time.

PUBLIC and EXTERNAL are used to create user defined
functions which, once compiled, may be linked with other
modules in the manner of intrinsic library functions. Proper
use of PUBLIC and EXTERNAL references is somewhat com-
plex and explanation is best deferred to the CB80 manual.

Disadvantages Of CB80

It appears that CB80 uses some extended functions of CP/M
2.x and will not run under CP/M 1.x or lookalikes. This may
be of concern to software vendors whose established market
includes a fair number of users with unsupported hardware.

Debugging usually accounts for much of the time spent in
program development. In this regard, CB80 appears
somewhat deficient. CBASIC's TRACE utility has been
dropped. I suspect that many CB80 users will find this a sig-
nificant shortcoming.

Many identical library routines must be linked redundantly
into every overlay. Under some circumstances this can waste
lots of disk space. By contrast, both CBASIC and the
BASIC-80 compiler produce smaller modules which require
roughly 16K of shared overhead (CRUN2 and BRUN, respec-
tively). However, because CB80 does not use shared run time
support, individual programs or overlays will run in less
memory, (although STAT will report that they are larger).

To sell or distribute CB80 composite programs, (those pro-
grams incorporating library routines), one must first acquire
a license from Digital Research which costs $2000 annually
with the possibility of a 20% escalation for each of the first
four renewals. The licensing fee applies regardless of [sales]
volume or the number of discrete CB80 products involved.
This policy may prove a major deterrent to new software
firms as well as smaller firms and those developing products
for specialized use.

CB80 Performance And Reliability

I have run several benchmark tests to compare CB80 with
CBASIC and the BASIC-80 compiler. As expected, CBASIC
is no speed contender. Floating point operations are con-
siderably faster with the BASIC-80 compiler than CB80. This
is largely a meaningless comparison because floating point
arithmetic of the BASIC-80 compiler is performed as single
precision binary as opposed to the fourteen digit BCD
representation used by CB80. (BCD is an acronym for Binary
Coded Decimal, which is an inherently more accurate but
slower system). CB80 enjoys a substantial edge in speed of in-
teger operations and a slight speed edge in performing string
manipulations. Benchmarks of larger programs suggests
that, overall, CB80 will provide slightly faster execution than

Lifelines, March 198244

J BYTES CLOSER

the BASIC-80 compiler and much faster execution than
CBASIC. Note: Although I did not include PL/I-80 in these
particular benchmarks, earlier testing indicates that its per-
formance is roughly comparable to the BASIC-80 compiler.

Two known bugs are acknowledged in the addenda. INKEY
will not work with CONCHAR% due to a bug in CP/M 2.2
and multiple line defined functions which return strings may
not be referenced twice within the same expression.

DEF FNA$
FNA$ = A$
IF LEN (B$) > 10 THEN RETURN
FNA$ = A$ + B$
RETURN
FEND

INTRODUCING PUNK II,™ a giant step
towards microcomputing perfection: the eight
million byte program.

Ufeboat's fast, versatile PUNK II two-pass
linkage editor helps you create large, sophisticat-
ed programs without any programming changes.

PUNK II is unique. While other linkage
editors require you to construct programs in
memory, PUNK II constructs your program on disk.
You gain complete use of your computer s memory,
using the full address space, up to 64K resident
segments even on smaller machines.

PUNK II also constructs applications larger
than your computer's address space. By creating
arbitrarily complex overlay structures, you can
flexibly bring in chunks of code from disk during
execution.

Ideal for use with all popular high level
languages, PUNK II even simplifies construction
of bootstrap routines, allows menu-driven links,
and more.

Reach out towards the infinite through PUNK
II. . . and see how far yourprograms can take you.

Lifeboat Worldwide offers you the world's largest
library of software from its offices in the U.S.A. ,
Japan, U.K., Switzerland, W. Germany, and France.

PRINT FNA$ + FNA$ < ----- ERROR!

Otherwise, version 1.2 appears to work correctly.
However, CB80 is still a relatively new product and it is quite
possible that minor bugs persist. At this point, CB80 has been
user tested in enough different applications so that bugs
which have not yet been found are apt to be trivial.

Digital Research has an enviable record of providing commit-
ted product support on a timely basis. This suggests that any
necessary fixes, refinements or enhancements to CB80 will be
completed quickly and professionally. Despite the fact that I
first acquired CB80 version 1.0 from Compiler Systems,
Digital Research has sent me updated versions without
charge (and before I had contemplated preparing this
review).

CB80 is a useful and well conceived product which has
already gained acceptance amongst many demanding users
for development of complex applications. Most CBASIC
programs can be transported easily, and CB80 is fast! My
principal reservations about [version 1.2 of] CB80 center on
the lack of a companion macro assembler, library manager
and cross reference utility. Any or all of these will be welcome
additions to future releases.

In conclusion, despite the few flaws and omissions (which are
typical of reasonably new products), I highly recommend
CB80 to any prospective user who doesn't find the licensing
terms too restrictive.

Mail coupon to: Lifeboat Associates,
| 1651Third Avenue, New York, New York 10028 or call
I (212) 860-0300. TWX 710-581-2524 (LBSOFT NYK)
* i■ Please send me more information on PLINK II.

Please send me a free Lifeboat Catalog.

SOFTWARE

SUPPORT

■ State Zip
■ PUNK II is a trademark of Phoenix Software Associates,
| Ltd. Copyright ©1981, by Lifeboat Associates.

i Lifeboat Associates i
World's foremost software source

T/MAKJ t Users GroupMl
The T/MAKER Users Group will provide members with a
bimonthly newsletter, where they can share experiences in
the areas of text editing, financial modeling, personal and
business accounting, mathematical and statistical applica-
tions, and other fields of interest. Users' technical ana non-
technical questions and problems will be answered.
The fee for a one-year membership is $9; those considering
membership may request a free sample copy of the news-
letter. The following information, along with your name
and address, should be included with membership checks:
computer name, model and memory; terminal manufac-
turer and model; disk format; operating system name and
version; T/MAKER version; areas of interest
Send your requests to T/MAKER Users Group, 2801
Flagmaker Dr., Falls Church, VA 22042.

TitleName

Company

Street

City

Lifelines, Volume II, Number 10 45

Letters

A Question

January 11, 1982
Dear Sir:

I am a recent subscriber to your maga-
zine and find it invaluable toward my
attempt to gain a better understanding
of the CP/M operating system. I need
to know more about its inner secrets
and I think I have found a good source
in your magazine. I am currently using
CDOS and am running into trouble
because it does not properly support
modern CP/M software on the
market.

I have been attempting to locate a ver-
sion of CP/M which I can run with my
CROMEMCO 16FDC floppy disc
controller board. I would also like to
expand it to work with one of the hard
disc systems on the market but need to
retain the 16FDC and my 8 inch disks
for backup. Can you steer me toward
a supplier who might already have a
version of CP/M that might fill my
needs? I have written to Digital
Research but they sent me a list of sup-
pliers but so far I have not been suc-
cessful in getting responses to my let-
ters when I write to those suppliers.

Sincerely,
Howard O. Ehlers

Can anyone suggest a solution to Mr.
Ehlers' problem? - Editor

On BASCOM and CDOS

January 12, 1982
Dear Sirs:

In "Tips & Techniques" (January
1982) Roberto Denis wrote concerning
the BASCOM problem with CDOS.
He states that "an undocumented fea-
ture of CP/M is that it also returns in
the A register whatever is returned in
the L register ...".

This is not undocumented. On page 3
of the "CP/M 2.0 Interface Manual",
Digital Research states "for reasons of
compatibility, register A = L and reg-

ister B = H upon return in all cases".
This fact is mentioned again in the
summary on page 46 of the same docu-
ment.

Roberto may be correct in his conclu-
sion that Microsoft could easily fix the
problem. But so could CDOS [sicjif
they wanted to extend their compati-
bility with CP/M. In any event,
Microsoft's use of the A register is not
outside the documented features of
CP/M.

Sincerely,

William R. Brandoni
Willoughby, Ohio

Praise for Christensen

January 18, 1982
Dear Ward,
I have been thinking of writing you for
some years now, but just haven't
taken the occasion to get "pen in
hand" until now. I've tried to reach
you several times while I have been in
Chicago on business trips but each at-
tempt was singularly unsuccessful. I
have been using some of your soft-
ware quite frequently over the last few
weeks and the thought keeps coming
back.

I just had to write to let you know just
how much I appreciate the contribu-
tions you have made to the micro field
and to me. I don't know just how often
you get letters of thanks but it should
happen quite frequently. All of the
S-100 system users in the Toronto area
here that I know use many of your
packages in the daily pursuit of their
hobby.

The first time that I came across your
work, you had written an article for
Dr. Dobbs. It described some of your
efforts in getting a new disk system go-
ing, I think it was with Micropolis
drives, and a Disassembler. That dis-
assembler is still being used by some
people here as are a multitude of your
other works'.

Those which I appreciate most are the
MODEM, XMODEM and DU series
of applications. I don't know what I'd
do without them. I don't have the nec-
essary expertise to sit down to write
them yet but am able to achieve my
immediate goals through their use. I
intend, one of these days to put
another of your products to work,
specifically, your assembler-written
CBBS package.

That's all.... Just: - Thanks a bunch! If
you haven't received any other similar
letters from the guys here in Toronto,
thanks a bunch more for them, too.

Sincerely,
Bill Harnell
Scarborough, Ontario
Canada

International Standards

15/1-82
Some suggestions for the Editor:

CONTROL CODES FOR SCREEN
HANDLING

I am sure that many newcomers to ap-
plication packages become confused
when they try to run an install pro-
gram on a screen type not referenced
in the install package. Some install
programs are more helpful than others
with either hard-copy documentation
or screen prompting - cf. T/MAKER
II.

Could Lifelines try to gather informa-
tion about control codes used on the
various screen types and publish this
in tables? This would then allow a per-
son unable to install a program to
compare the screen he/she is using
with others and then perhaps find one
that works in a similar manner.

ASCII - DATES - DECIMAL POINT

ASCII does not take account of char-
acters found in other world languages.
This is a particular problem in Europe
and what is needed here is a EURO-
PEAN STANDARD CODE FOR IN

Lifelines, March 198246

FORMATION INTERCHANGE
(ESCH) - allowing for a character set
including system control codes of up
to 256. Take for instance the German
letters: a, ii and the double ss - or the
Norwegian 0, ae, or S.

The problem is not only one of graphic
representation, but also their hier-
archy in for instance a sort program.

Another problem is that most applica-
tion packages operate with an Ameri-
can method of dating - 1/15/82 for
January 15th, 1982. But even in Scan-
dinavia there are differences between
Norway and Sweden in the presenta-
tion of the date. In Norway we would
expect 15/1-82 whereas in Sweden
they would write 82/1/15 - i.e., the
year first.

The decimal point also presents prob-
lems. Where in the US and UK one
uses a period (.) - in many other coun-
tries standard practice is for the
comma (,) to represent the decimal
divider and the period (.) the thou-
sands separator.

As many of the world's software
houses are located in the USA and
since the major operating systems also
originate there, little account seems to
be taken of requirements elsewhere. I
would appreciate the Editor bringing
these matters to the attention of the
vendors via the columns of your
esteemed publication.

Yours sincerely,
Brian J. Brown, System Applications
Mgr.
Scanword, AS
Oslo, Norway

Bugs and Patches
FABS, FABS II,
and BASIC-80 Bill Norris

FABS-II does not work with Version 5.21 of the BASIC-80 Interpreter. The two do
not link because of a change in the new MBASIC. One way to solve this problem is
to preserve your CPU's registers while MBASIC is executing. This way you can go
back to the system, SAVE MBASIC with FABS and have the SAVE program
restore the registers. Use this until a new version of FABS solves the problem. This
patch should also be useful for ULTRASORT.

• ***
;**
;** Program name is FIXBAS.MAC

**
**

;** Program to permi t r een t ry to MBASIC 5.21 **
• **9 This is not needed wi th previous vers ions of **
;** MBASIC. (I t may be used neve r the l e s s) . **
• **
9 Orig ina l ly wr i t t en to permi t saving a memory **
• **
9 image of MBASIC/FABS. Use fu l fo r ULTRASORT too . **
• ** **
• ***
• ** **
- **
9 To use with MBASIC 5 .21 and FABS/FABS-II: **
• ** 1> Assemble **
• **
9 With M80, the command l ine could be: **
• ** A>M80 8000, =8000 **
•** 2> Produce a HEX f i l e **
• **
9 With L80, type the fo l l owing : **
• **
9 */p : 8000, 8000, 8000 /n /x / e **
• **
9 3> Load the code wi th DDT **
• **
9 A>DDT 8000. HEX **
• ** “GO **
• **
9 4> Run RELFABS/RELFABS2 **
;** **
• ** 5> Load MBASIC **
• **
9 MBASIC /M:xxxx (see note 1) **
• **
9 6> Execute 8000 pa t ch **
• **
9 A=&H800J (see note 2) **
• ** CALL A **
• **
9 (you wi l l now be back in CP/M **
• ** 7> Save compos i te p rog ram. **
• **
9 A>SAVE xxxx PROGRAM.COM (see note 1) **
- **9 **
• k k kkk

• ** **
; ** Da te : Feb. 4, 1982. Wr i t t en by: B i l l Nor r i s . **
;** **
• ** NOTE 1: the values xxxx are spec i f i ed by RELFABS **
• ** **
- **
9 NOTE 2: if your computer has very l i t t l e memory, **
;** this code wi l l p robably be over la id by **
• **
9 FABS. You may t ry l oca t ing i t lower (t he **
;** current MBASIC ends a t 6000 hex) or h ighe r . **
• **
9 If you choose to s e t the o r ig in h ighe r , make **
• **
9 su re tha t i t l i es comple te ly above the BIOS. **
;** **
; ***

as eg
s t a r t equ 8000h ; This value is not c r i t i c a l . I t

; mus t , however l i e somewhere
; above MBASIC and below FABS,
; or comple te ly above the BIOS.

Notice

The February issue was placed into the
mail on January 27th. If you had any
problem with the timeliness of this
issue, please call our subscription
department at (212) 722-1700, or write
to Lifelines/ The Software Magazine
Subscription Department, 1651 Third
Ave., New York, N.Y. 10028. We ex-
pect to place this issue, dated March
1982, into the mail around February
25th. We will print each month the
date of the previous issue's mailing
and would appreciate your help in
tracking the deliveries.

(continued next page)
Lifelines, Volume II, Number 10 47

org s t a r t
sh ld hiho ; Save HL.
Ixi h ,0 ;
dad sp ; Current s t ack .
sh ld ols tak+l ; Save i t .
lhld hiho ; Get back HL.
Ixi sp ,nus t ak ; Push r eg i s t e r s he re .
push h ; Save HL.
push d ; Save DE.
push b ; Save BC.
push psw ; Save AF.
Ixi h ,0 ;
dad sp ;
sh ld res tak+1 ;
Ixi h , r e s t ak ; Force jump to code which

; r e s to res the machine s t a t e .
sh ld lOlh ; Pa tched .

Jmp 0 ; Go to CP/M and i ssue the save
; command spec i f i ed by RELFABS

The Pipeline (continued from page 4)
have been working on a project to put
a 6809 microprocessor on the Heath
ET-3400 trainer. Our side of the proj-
ect was to get the software working,
while Don Burtis of Burtronix devel-
oped the hardware interface.

To do our task we needed some tools
to blow PROMs and hopefully give us
a chance to simulate the software be-
fore doing so.

While searching around for the Ideal
tools, we ran across Microsoft's As-
sembly Language Development Sys-
tem (ALDS) for the Apple, and Vista's
PROM Simulator System also for the
Apple.

The Vista board, priced at $495, fits in
any of the available I/O slots on the
computer's backplane, and simulates
PROM from RAM allowing any new
code to be tested within the system
before a PROM is burned.

The PROM Development System fea-
tures a menu-driven program that op-
erates under Apple DOS and is able to
simulate and program: 2708, 2716,
2532, 2732, and 48016 EEPROMs.

res tak : Ixi S P > 0
POP psw
pop b
pop d
pop h

o l s t ak : Ixi sp ,0
re t

hiho : db 'This space is fo r the s t ack !
rius tak : nop

end

The disk-based, menu-driven pro-
gram development monitor, permits
the direct loading of code from an as-
sembler to the onboard 4K RAM for
simulation purposes. The simulator
section is made up of the memory, the
Apple bus interface, and the cable in-
terface used to plug into the target
machine. The RAM is two CMOS 2K
x 8 Hitachi 6116 RAMs, and is mapped
into a 2K address space.

The interconnecting cable that is de-
signed to plug in a 24-pin dip socket
series is terminated with 39 ohms to
reduce overshoot and ringing. The
board is programmed for the type of
PROM to be simulated by using wire-
programmable dip plugs.

The PROM Development stem isn't
restricted to developing fii.iiware for
the 6502 uP, but can be used to simu-
late or burn PROMs for any proces-
sor. In our case we used XASM-09 to
develop the code.

Although the software monitor works
with Apple DOS, you can employ
Microsoft's $125 Assembly Language
Development System to create code
for Z-80, 8080, 8088, and 8086 sys-

P068 - UTRILLO M. (1883-1955)
Sacrd -Coeur de Mon tmar t re

I WRsve THU G-ftEAT COLUMN
A&oVT T H£ TRS'<io wPEL K .
\ CALL r r 'THECAhJWMA-
\SAITIV& LcAWoMj &ALL$ f i

UPDATE POLICYTWTl
MIC/ldSoFT CA»F vPW'TH j
AMD LAST &VT /WT *
MY OLD PAL

VNFOR'TvyAIELY' 0<V M I
U/M TO offset,
4 V/C/0 Pofi£7?M/Y
4T£ •

' r AQ t

D

IV f (0DX&

PAR AVION 1

2 n ' *
19
27-
1982

L lEtHA/£S

Lifelines, March 198248

terns, and load the simulator's RAM
with the output. For our project, we
just happened to do most of our
development work on the hard disk
system, downloaded it to the Apple
and used ALDS to convert it to Apple
DOS. This is only just one of the
features of the software, and it per-
forms the job admirably.

Once the code is developed and passes
inspection, the PROM can be created
by using the onboard Tex tool socket
to plug in the PROM; then by selecting
the Burn PROM routine from the
menu, the programming can take
place.

Besides serving as a simulator and
PROM burning tool, the development
system can be employed for diagnos-
ing problems with existing PROMs, or
for Copying PROMs. This function is
a standard feature of the system moni-
tor.

To copy a PROM all that is necessary
is to plug the desired PROM to be read
in the Textool socket and enter the
read routine. This routine then reads
the contents of the PROM and copies
it into memory.

Once the contents are in memory, you
can either program another device, or
make changes on the byte level; or by
using the Microsoft ALDS package,
you can disassemble the contents for
further development or update.

While working on this project, Pat
and I came to several conclusions
about the tools we used: one, the Vista
board is worth the $495 just for the
time it saves; XASM-09 is easy to use,
handles the job quickly but unfortu-
nately lacks macros; next, Microsoft's
ALDS package belongs on every pro-
grammer's work bench, and like the
simulator board saves a great deal of
time and wasted effort. Should this
sound like an endorsement of the
above products - it is.

Macros of the Month Michael Olfe

Here are some more contributions from Ward Christensen. We hope this will in-
spire some of you PMATE users out there.

— Mike Olfe

I like the "repeat" key in WordMaster, and missed it badly. So, I faked up a
"repeat-4" key function to PMATE. I now can hit ?W (the old WM repeat key),
followed by any of several keys.

While this repeat-4 key "almost" made up for the lack of the repeat key, I still
found there were times I used the repeat key in WM that it couldn't handle. For ex-
ample, to put a line of ' — ' across to break things up, as I have done in this docu-
ment. I selected a control- ¥2 or control-], depending upon whether I am on the
H-19, or on an old keyboard hooked to a VIO, as a "meta" (extended) control
key. In "meta" mode, I have put in some extra functions

meta '-' puts the 63 dashes on the screen
meta word right deletes word right
meta word left deletes word left
meta C/R edits command line
meta scroll u. goes to top of file
meta scroll d. goes to bottom of file

Here are the user-instant commands I have added:

; 1 92 : Beginning/end of l i ne :
UIC192 DB ' @X>0[0L] [L-M@T=13 [%] @T<224 [M]] z , 0
9

;193: Erase en t i r e l i ne :
UIC193 DB z 0LK z ,0
9

; 1 94 : Erase to end of l ine
UIC194 DB zK13I-M z ,0
5
; 195: Open 4 l ines
UIC195 DB ZI Z , 13, 13, 13, 13 , e sc , Z-4M Z ,0

; 196: 4 s c ro l l up
UIC196 DB z-80L z ,0

; 197: 4 s c ro l l down
UIC197 DB z80L z ,0

; 1 98 : 4 lines up
UIC198 DB ' @X,-4L@SQX Z, 0

;199: 4 lines down
UIC199 DB Z@X,4L@SQX Z ,0

;200: 4 right
UIC200 DB z 4M z ,0

;201: 4 l e f t
UIC201 DB Z-4M Z ,0

;202: 4 de le t e
UIC202 DB z 4D z ,0
9

(continued next page)
Lifelines, Volume II, Number 10 49

; 203 : 4 k i l l
UIC203 DB ' 0L4K ' ,0

;204 : 4 word right
UIC204 DB ' 4W' ,0
>
;205 : Inser t a l ine of dashes
UIC205 DB ' 6 [i ------------------ ' , e s c , '] 13 i ' ,0
9

; 206 : Disp lay ve r s ion number
UIC206 DB ' 111 /30 /81 18 :50 ' , e sc , 0
>
USRCOM ; INITIALLY EXECUTED USER COMMAND

DB 0
/

Here are some more of my permanent macros:

New Products
The software described below is avail-
able from its au thors , computer
stores, software houses, distributors
and publishers.

COBOL ANIMATOR
Micro Focus

This product is designed to display the
source listing of a program on the
screen, moving the cursor from state-
ment to statement as execution pro-
ceeds. Programs can be run a state-
ment at a time, or continuously so that
the execution path can be observed.
Speed can be adjusted under continu-
ous animation. COBOL ANIMATOR
can also be run normally; in this case
only user displays are shown - it can
be switched back into animation mode
to examine, for instance, the
program 's operation with a certain
data set.

The interactive debugging capabilities
allow the programmer to set execution
breakpoints and change the path of ex-
ecution, so as to omit or repeat parts
of the program. When the program's
execution has been halted, the user
may query the value of a data item by
moving the cursor onto it and issuing a
simple command . He may then
change the value before continuing.

DELETE TRAILING SPACES

I sometimes want to pick up a WordStar document, and convert it to PMATE. In
formatted mode, WordStar puts spaces at the end of lines. PMATE doesn't. The
following macro deletes trailing spaces:

*X 21-2m@t=32 [d] [1]
In de t a i l :

~X ;*X(space) : space is the macro name
21 ;go down 2 l ines
-2m ; then back over C/R, to

; pos s ib l e space
@t=32 ; If the charac te r is a space

[d] ; de l e t e i t
[1] ; o the rwise move down a l ine

DELETE REDUNDANT SPACES

If I pick up program documentation, and find it to be justified, I sometimes want
to delete the "noise" duplicate spaces justification inserted. This macro deletes all
duplicate spaces, except those following a period.

~X. [s $-3m@t=".{3m"}2mgOK?$@k=127 [dqr]]

which means:

"X. ;permanent macro named
[; r epea t
s $; s ea rch fo r a space
-3m ;back up 3 charac te r s
@t=". ; i s the char a pe r iod?

{3m"} ;yes , move 3 and loop to ”[”
2m ;o the rwi se move 2 spaces
gOK?$; p r in t a p rompt , wa i t f o r key
@k=127 ; i f the key p re s sed is "DEL"

[dq r] ; t hen de l e t e i t and re-d isplay
] ; loop

COBOL ANIMATOR may be used on
any COBOL source program con-
forming to the ANSI 1974 standard,
regardless of the original compiler
used to write it.

COBOL SLIDESHOW
Micro Focus

This software tool is intended for the
creation and maintenance of applica-
tion packages. It allows the developer
to present information in menus, with
still or moving color graphics, or text
displays. Linked with applications
programs, it is designed to permit soft-
ware which is more user-friendly. In
addition, it can be manipulated with-
out programming, thus separating the
programming and application design
functions in software development.

SLIDESHOW can also be used with
already-existing software products. It

— Ward Christensen

Lifelines, March 198250

4095 characters are now flagged
as errors.

9. The printer must be opened as
output only or an error is re-
ported.

10. The compiler now accepts 4 or 6
(ANSI 74) position line numbers.
It looks at the first line and deter-
mines which to use. The default is
four positions.

11. Literals can now be followed by a
comma. In some cases this was be-
ing incorrectly reported as an er-
ror.

12. The compiler expands all tabs
every eighth position, i.e. 1, 8, 16,
24, 32.

13. The error report now lists user line
numbers and internal line num-
bers; if an error occurs in a copy
file it is flagged with a C.

14. The display series now shows
each operand on the same line, per
ANSI 74.

15. IF A (XI) IS NUMERIC and its
subscript were incorrectly flagged
as an error; this has been fixed.

16. The SELECT error which oc-
curred when running under
MP/M II has now been repaired.

17. The source file name is now out-
put to the error report.

18. COMP and COMP-3 cannot be
edited-receiving fields and are
now correctly flagged as errors.

19. Compound Conditionals (IF A =
B OR = C) will now handle the
omission of the A-operand.

20. Addresses are now handled cor-
rectly when a CALLED program
is CALLED by another CALLED
program.

21. SYNC, BLANK WHEN ZERO,
JUSTIFIED, USAGE can occur be-
fore PICTURE now.

22. -9(18) is now properly handled.
23. (Space . Space) ANSI 74 period

can be preceded by a space now.
24. When certain combinations of

edit symbols are used the compiler
goes into a loop; this is now
reported as an error.

25. Error report heading and other
messages are now on file
W5.CBL; error messages can now
be on more than one line.

26. RENUMBER.CBL now flags short
records and records with tab char-
acters in the first four columns. It
cannot expand tabs or number
blank lines.

27. The rewrite of a variable file when
the input was null set has been
corrected.

28. Level numbers can now be 01
(continued next page)

51

treats an application as a number of
discrete steps linked together by many
alternative paths. The designer speci-
fies a sequence in which application
steps are performed by creating a con-
trol file, in which each record specifies
a single step in the application. Any
number of control paths can be built in
to index and sequence system compo-
nents.

SLIDESHOW is conceived as an oper-
ating environment which can enforce
a logical pattern on the operation of
applications packages when they are
used by people having little back-
ground in computing.

Fin-Ratio
FPS Associates

This package is designed to aid Finan-
cial Ratio Analysis. Amounts from
balance sheets and income statements
are entered from the keyboard and
Fin-Ratio generates eighteen financial
ratios, forty two derived data and per-
centage relations. Sets of data from
different balance sheets, income state-
ments and sets of norms can be com-
bined for financial analyses.

Twenty-nine business or company in-
ternal norms can be entered and
printed out next to the financial data.
A "z" ratio is generated, which is a
composite indicator of propensity for
financial failure. Amounts can be up
to $99,999,999 thousand.

Fin-Ratio runs under CPM-80 and is
available in Microsoft BASIC; it re-
quires 48K RAM.

Inquiry Learning Or Teaching) is in-
tended for both business and educa-
tional use. It is string-oriented, ex-
pressly for interactive applications
like data entry, programmed instruc-
tion, and testing. PILOT allows the in-
experienced user to quickly develop
dialogue programs. PILOT can be
used with BASIC, COBOL, and PAS-
CAL to simplify training.

This package includes a full screen text
editor, commands to drive optional
equipment. It requires CPM-80, 32K
RAM.

New Publications

CBASIC Users Guide
by Adam Osborne, Gordon Eubanks
and Martin McNiff
This guide is an accompaniment to the
CBASIC manual, providing more ex-
amples and tutorials. Chapters are de-
voted to input programming, output
programming, file handling, and as-
sembly language interface. The book
should be most useful for those new to
CBASIC who wish to run application
software and write their own pro-
grams. Narrative descriptions of
CBASIC commands, detailed expla-
nations of error messages, and other
features should help answer the ques-
tions of users.

New Versions
Nevada COBOL
Version 2.1

This update implements a large num-
ber of bug fixes, including the follow-
ing:
1. Called programs with linkage and

I/O address problems.
2. Two Random files in a program

with different size keys.
3. Write in Random I/O mode to ex-

tend the file now works.
4. Called program not on the default

drive now works.
5. IF A = B GO TO X ELSE ...(IF's

with GO TO s now work.)
6. REDEFINES at 01 level in file sec-

tion now are flagged as errors
(ANSI 74).

7. IF A = B OR C = D GO TO X.
(Compound conditionals with
GO TO's now work.)

8. Records in working-storage over

Nevada Edit
Ellis Computing

This character-oriented full screen
video display text editor is designed
specifically for computer program text
preparation. It includes single key
commands for cursor control, scroll-
ing, block moves, search and replace,
tab setting and multiple file insertions.

It requires CPM-80 and a minimum of
32K RAM.

Nevada Pilot
Ellis Computing

This version of PILOT (Programmed

Lifelines, Volume II, Number 10

1. The INSTALL program now in-
terprets "+" as the start of a
specification of null characters to
be generated at the end of a screen
control sequence.

2. Automatic page breaks for re-
ports with a large number of col-
umns now operate properly for
the third and subsequent pages.

3. Blank lines generated by rows us-
ing the specification "S" now are
counted for automatic page
breaks.

4. The automatic form feed which
formerly occurred at the begin-
ning of a report printing now is ex-
ecuted at the end.

through 49 or 77, one or two posi-
tions.

29. Random files up to 8 megabytes
are allowed.

PAS3 Medical
Version 1.78
PAS3 Dental
Version 1.64

Two bugs have been corrected in these
versions:

1. The aging report now prints the
last person on the page or the top
of the next page.

2. If the number of treatment details
on regular billing and Insurance
billing exactly matches the num-
ber of lines on the form the last
treatment on the form does not
print. The totals are correct.

release on March 1st 1982. It com-
prises several enhancements to the
software. A new programmer's sec-
tion has been appended to the opera-
tor's manual, for data file layout and
interfacing techniques. Sub-menus
now have an "M" option for direct ac-
cess to the main menu.

Inter-Office Administration features
have been expanded to allow thirty
characters in doctor and insurance ad-
dress lines; this permits Series 9000 to
accommodate the new zip codes. A
second address line has also been im-
plemented. The ICDA/CPT/ADA
code description lines can also be
thirty characters, and sixty characters
are provided for billing messages. The
operator now can add a specific inter-
est rate or standard late charge to bill-
ings. All past due accounts may have
interest charges calculated at the end
of the month.

Series 9000 Medical and Dental Man-
agement System
Version 1.10

PLAN80
Version 2.2

In version 2.1 there was a complete re-
write of the RULES processing logic;
this resulted in some problems, which
have now been fixed. A may now
be used for on-line input of values.
The "T" may be used for exponentia-
tion. A Cell-to-cell assignment state-
ment of the form

(ROWX,COLY) = @(ROWA,COLB)
now operates properly.

PLAN80 now runs on an Apple II with
a standard 40-column monitor, in ad-
dition to Apples with 80-column
boards or external terminals. How-
ever, 40-column Apples without a
shift key modification are unable to
generate lower case letters to control
cursor movement in the DISPLAY
mode. You may use the following al-
ternative codes, which have been
added:

This version fixes the following two
problems in Version 1.08:

1. When editing the patient master
record from zero dependents to
one or more, the system operates
properly. If, however, the record
which originally contained depen-
dents was edited back to zero, the
dependents were not deleted from
the database, and some alphabetic
reports would not operate prop-
erly, unless the Master record was
deleted and re-entered once more,
along with disk space recovery or
end-of-month processing. This
would not overwrite or disrupt
any other records, but could be a
poss ible p rob lem until the
dependents are deleted by the
method mentioned above, or with
a text editor.

2. ICDA Codes (Medical Systems
Only) with modifiers could not be
deleted once entered, only edited.
Users of previous versions may
safely use a text editor on MDIC-
DA.DAT file and delete the de-
sired code. This will not affect any
other ICDA records or indexing.

In addition, a new American Dental
Association form has been imple-
mented.

Series 9000 Medical and Dental Man-
agement Systems
Version 2.0

Patient Administration improvements
include modifications to support a
new "mixed mode accounting" feature
allowing the user to define any specific
account as open item, balance for-
ward, or third party billing. Interest
charges may or may not be specified
for each account. The "escrow credit"
balance field has been modified to
reflect true "account balance". In ad-
dition, where the patient account
number is not known, the operator
may now enter the last name instead
and the system can locate the account,
using a SOUNDEX search method.

In Daily Processing, last name routine
may be used instead of account num-
bers if desired. The limit of eight
charges per invoice has been elimi-
nated, and it is possible to set up a
treatment case on one day but add re-
lated charges later. Each specific in-
voice can be assigned as a cash trans-
action, or as a time billing with several
types of increments. All reorganiza-
tion of indices now occurs only at the
end of the day, so that daily interac-
tive processes are sped up.

Primary and secondary diagnoses are
now supported in the Medical version,
as are primary and secondary insur-
ance company assignments to a treat-
ment expense. All charges on a specific
treatment will be printed on the single
insurance form, even if charges oc-
curred on different days.

Cursor Primary Alternative
Direction Key Key

up i
left j
right k
down m

Both primary and alternate keys may
be prefaced by a number to move the
cursor by more than one row or col-
umn. Thus "12." would move the cur-
sor down twelve rows.

This further update is scheduled for The Master Report section now in-Here are some other bug fixes:

Lifelines, March 198252

desired by the user. The BAR function
is intended as an additional graphic
tool to improve the readability of
tables produced using T/MAKER II.

eludes inter-office reports and sup-
ports form feed printers. Pausing and
Quitting are now permitted on most
reports.

T/MAKER II
Version 2.5.1

This version introduces a number of
enhancements. The print function
now translates a given character in the
working file into a series of characters
or control codes to be sent to the
printer when printing a file. Charac-
ters now may be entered with the
eighth bit on; thus additional charac-
ter sets can be created for a variety of
purposes. A patch for Panasonic users
has been added.

This version contains a new function,
called BAR. It encompasses
a large number of commands, allow-
ing rows and columns to be barred, so
that bar charts can be created. Com-
mands are divided into groups which
determine the values to be barred, the
presentation of charts, and the dispo-
sition of the charts. The width, spac-
ing between bars and characters used
to form the bars can be regulated, as
can the beginning and end points of
the bars on the charts. The lines on the
bar charts can be numbered and the
bars can be named. The bar chart files
can be manipulated in various ways -
combined, incorporated into working
files, interspersed, etc. In addition, the
bars can be suppressed or displayed as

Operating Systems
Description Version

These operating systems are available
from Lifeboat Associates, except where
otherwise mentioned.Bugs
CP/M-80 for:
Apple II w /Microsoft BASIC 2.20B
Datapoint 1550/2150 DD/SS 2.21
Datapoint 1550/2150 DD/DS 2.21
Datapoint 1550/2150 DD/SS w/CYN 2.21
Datapoint 1550/2150 DD/DS w/CYN 2.21
Durango F-85 2.23
Heath H8w/H17 Disk 1.43
Heath /Zenith H89 2.2
iCOM 3812 1.42
iCOM 3712 w /Altair Console 1.42
iCOM 3712 w/IMSAI Console 1.42
iCOM Microfloppy (# 2411) 1.41
iCOM 4511/PertecD3000 Hard Disk 2.22
Intel MDS Single Density 1 .4
Intel MDS Single Density 2.2
Intel MDS 800/230 Double Density 2.2
MITS Altair FD400, 510, 3202 Disk 1.41
MITS Altair FD400, 510, 3202 Disk 2.2
Micropolis Mod I - All Consoles 1.411
Micropolis Mod II - All Consoles 1.411
Micropolis Modi 2.20B
Micropolis Mod II 2.20B
Compal Micropolis Mod II 1.4
Exidy Sorcerer Micropolis Mod I 1.42
Exidy Sorcerer Micropolis Mod II 1.42
Vector MZ Micropolis Mod II 1.411
Versatile 3B Micropolis Mod I 1.411
Versatile 4 Micropolis Mod II 1.411
Horizon North Star SD 1.41
Mostek MDX STD Bus 2.2
Ohio Scientific C3 2.24
Ohio Scientific C3-B/74 2.24B
Ohio Scientific C3-C'(Prime) /36 2.24B
Ohio Scientific C3-D/10 2.24A
Ohio Scientific C3-C 2.24A
Sol North Star SD 1.41
North Star SD IMSAI SIO Console 1.41
North Star SD MITS SIO Console 1.41
North Star SD 2.23A
North Star DD 1.45
North Star DD/QD 2.23A
Processor Technology Helios II 1.41
by Lifeboat /TRS-80 5 "(Mod I) 1.41
by Lifeboat /TRS-80 Mod II 2.25C
by Cybernetics/TRS-80 Mod II 2.25

Hard Disk Modules
Description Version

BDS C Compiler
Version 1.45

A bug in the CLIB.COM program
does not allow the user to open a CRL
file for processing if a disk designator
is specified as part of the filename and
that filename is more than six charac-
ters long. This problem has been re-
paired in the same version, but some
users will have CLIB.COMs with this
fault ; they can receive new
CLIB.COMs.

In the NOBOOT document on the sec-
ond page in the listing of patches to
C.CCC, the hexadecimal byte at loca-
tion 013A under the NOBOOT col-
umn header should read 39 instead of
19. This also has been repaired within
version 1.45.

IBM/CPM

No version of this product runs with
the CCS CPM-80; it also doesn't run
with Lifeboat's CP/M-80 (version
2.25) for the TRS-80 Model II, or on
the Hewlett-Packard 125.

Attention Dealers!
There are a lot of reasons why you should be carrying

Lifelines/The Software Magazine in your store. To provide
the fullest possible service to your customers, you must

make this unique publication available. It will keep them up
to date on the changing world of software: on updates,

new products, and techniques that will help them use the
packages you sell. Lifelines can back up the guidance

you give your customers, with solid facts on the capabilities
of different products and their suitability to a variety of

situations. Now we can also offer you an index of all back
issues of Lifelines, opening up a full library of information

for you and your customers.

For information on our dealer package, call (212)
722-1700, or write to Lifelines Dealer Dept., 1651 Third

Ave., New York, N.Y. 10028.

Corvus Module 2.1
APPLE-Corvus Module 2.1A
KONAN Phoenix Drive 1 .8
Micropolis Microdisk 1.92
Pertec D3000/iCOM 4511 1.6
Tarbell Module 1.5
OSI CD-74 for OSI C3-B 1.2
OSI CD-36 for OSI C3-C' 1.2
SA 1004 for OSI C3-D 1.1
SA 4008 for OSI C3-C 1.3

(continued next page)
53Lifelines, Volume II, Number 10

VERSION LIST
February 8, 1982

The listed software is available from the authors, computer stores S Standard Version
distributors, and publishers. Except in the cases noted, all software M Modified Version
requires CP/M-80, SB-80, or compatible operating systems.

P Processor
New Products and new versions are listed in boldface. MR Memory Required

Product s M P MR
ACCESS-80 1.0 8080/Z80 54K
Accounts Payable/ Cybernetics 3.1 Z80 64K Needs RM/COBOL
Accounts Payable/MC 1.0 8080/Z80 56K For CP/M2.2
Accounts Payable/ Structured Sys 1.3B 8080 52K w/It Works run time pkg.
Accounts Payable/Peachtree 07-13-80 48K Needs BASIC-80 4.51
Accounting Plus 8080/Z80 64K
Accounts Receivable /Cybernetics 3.1 Z80 64K Needs RM/COBOL
Accounts Receivable/MC 1.0 8080/Z80 56K CP/M2.2
Accounts Receivable/Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
Accounts Receivable/ Structured Sys 1.4C 8080 56K w/It Works run time pkg.
Address Management System 1.0 8080 Requires 2 drives
ALDS TRSDOS 3.40 8080 32K Needs TRSDOS. TRSDOS Macro-80
ALGOL 60 4.8C 8080 24K
ANALYST 2.0 8080 52K Needs CBASIC2,QSORT /ULTRASORT
APL/V80 3.2 Z80 48K Needs APL terminal
Apartment Management (Cornwall) 1.0 1.0 8080 Needs CBASIC2
ASM/XITAN 3.11 Z80
Automated Patient History 1.2 8080 48K
BASIC Compiler 5.3 5.3 8080 48K
BASIC-80 Interpreter 5.21 5.21 8080 40K w/Vers. 4.51,5.21
BASIC Utility Disk 2.0 2.0 8080 48K
BOSS Financial Accounting System 1.08 8080 48K Needs 2/3- drives w/min 200k each, & 132-col. printer
BOSS Demo 1.08 8080 48K
BSTAM Communication System 4.5 4.5 8080 32K
BDS C Compiler 1.45 1.45T 8080 32K w/'C' book
Whitesmiths' C Compiler 2.0 8080 60K
BSTMS 1.2 1.2 8080 24K
BUG / uBUG Debuggers 2.03 Z80 24K
CBASIC2 Compiler 2.08 8080 32K w/CRUN(2,204P, & 238)
CBS Applications Builder 1.3 8080 48K Needs no support language
CIS COBOL Compiler 4.4,1 8080 48K
CIS COBOL Compact 3.46 3.46 8080 32K
FORMS 1 CIS COBOL Form Generator 1.06 1.06 8080
FORMS 2 CIS COBOL Form Generator
Interface for Mits Q70 Printer

1.1,6a 8080
CP/M1.41 or 2.XX

COBOL-80 Compiler 4.01 4.01 8080 48K
COBOL-80 PLUS M/SORT 4.01 8080 48K
CONDOR II 2.06 8080 48K
CREAM (Real Estate Acct 'ng) 2.3 8080 64K CBASIC needed
Crosstalk 1.4 Z80
DATASTAR Information Manager 1.101 8080 48K
Datebook-II 2.03 8080 48K Needs 80x24 terminal
dBASE-II 2.3A 8080 48K
dBASE-II Demo 2.3A 8080 48K
Dental Management System 8000 8.7A 8080 48K Needs CBASIC
Dental Management System 9000 1.07 8080 48K Needs CBASIC
DESPOOL Print Spooler 2.1A 8080
DISILOG Z80 Disassembler 4.0 4.0 Z80 Zilog mnemonics
DISTEL Z80/8080 Disassembler 4.0 8080/Z80 Intel mnemonics,TDL extensions
Documate/Plus 1.4 8080 36K
EDIT Text Editor 2.06 Z80
EDIT-80 Text Editor 2.02 2.02 8080
FABS-I 2.6 8080 32K
FABS II 4.15 8080/Z80 48K
FILETRAN 1.20 32K 1-way TRS-80 Mod I,TRSDOS to Mod I CP/M
FILETRAN 1.4 32K Needs TRSDOS. 2-way TRS-80 Mod I,TRSDOS

& Mod I CP/M
FILETRAN 1.5 32K 1-way TRS-80 Mod II,TRSDOS to Mod II CP/M
Financial Modeling System 2.0 48K
Floating Point FORTH 2 8080/Z80 28K
Floating Point FORTH 3 8080/Z80 28K
FORTRAN-80 Compiler 3.43 3.43 8080 36K
FPL 56K Vers. 2.6 8080 56K
FPL 48K Vers. 2.6 8080 48K
General Ledger/Cybernetics 1.3C Z80 48K Needs RM/COBOL
General Ledger/MC 1.0 8080/Z80 56K Needs CP/M 2.2 or MP/M
General Ledger/Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
General Ledger/ Structured Sys 1.4C 8080 52K w/It Works Package

Lifelines, March 198254

VERSION LIST

Product s M P MR
General Ledger II/CPaids 1.1 8080 48K Needs BASIC-80 4.51
GLECTOR Accounting System 2.02 8080 56K Use W/CBASIC2,Selector III
GLECTOR IV Accounting System 1.0 8080 Needs Selector IV
HDBS 1.05A + 52K
IBM/CPM 1.1 8080
Insurance Agency System 9000 1.08 8080 Needs CBASIC
Integrated Acctg Sys/Gen'l Ledger 8080 48K Needed for 3 pkgs, below
Integrated Acctg Sys /Accts Pyble 8080 48K
Integrated Acctg Sys /Accts Rcvble 8080 48K
Integrated Acctg Sys/Payroll 8080 48K
Interchange Z80 32K
Inventory /MicroConsultants 5.3 8080/Z80 56K Needs CP/M 2.2
Inventory /Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
Inventory/ Structured Sys 1.0C 8080 52K w/It Works Package
Job Cost Control System/MC 1.0 8080/Z80 56K Requires CP/M 2.2
JRT Pascal System 1.4 8080 56K
LETTERIGHT Text Editor 1.1B 8080 52K
LINKER Z80
MAC 2.0A 8080 20K
MACRO-80 Macro Assembler Package 3.43 3.43 8080/Z80
MAG/basel 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
MAG/base2 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
MAG/base3 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
Magic Typewriter 3 Z80 48K
Magic Wand 1.11 8080 32K
MAG/sam3 4.2 8080 32K
MAG/sam4 1.1 8080 32K Needs CBASIC
MAILING ADDRESS Mail List System 07-13-80 8080 48K
Mail-Merge 3.0 8080
Master Tax 1.0-80 8080 48K
Matchmaker 8080 32K
MDBS 1.05A + 48K
MDBS-DRS 1.02 + 52K
MDBS-QRS 1.0 + 52K
MDBS-RTL 1.0 + 52K
MDBS-PKG + 52K w/all above MDBS products
Medical Management System 8000 8.7a 8080 Needs CBASIC
Medical Management System 9000 1.1 8080 Needs CBASIC
Microcosm Z80 CP/M 2.X or MP/M
Microspell 4.3 8080 48K Needs 150K/drive
Microspell Demo 1.0 For Dealers Only
Microstat 2.04 8080 48K Needs BASIC-80, 5.03 or later
Microstat for Apple 2.0
Mince 2.6 8080 48K
Mince Demo 2.6 8080 48K
Mini-Warehouse Mngmt. Sys. 5.5 8080 48K Needs CBASIC
Money Maestro 1.1 8080/Z80 48K CP/M 1.4 or 2.2
MP/M-I 1.0
MP/M-II 2.0 8080 48K Needs MP/M
MSORT 1.01 8080 48K
Mu LISP-80/Mu STAR Compiler 2.10 2.12 8080
Mu SIMP / Mu MATH Package 2.10 8080 muMATH 80
NAD Mail List System 3.0D 8080 48K
Nevada COBOL 2.1 8080 32K
Order Entry w/ Inventory /Cybernetics Z80 Needs RM/COBOL
Panel 2.2 44K Also for MP/M
PAS-3 Medical 1.78 8080 56K Needs 132-col. printer & CBASIC
PAS-3 Dental 1.64 8080 56K Needs 132-col. printer & CBASICPASM Assembler 1.02 Z80
Pascal /M 4.02 8080 56K
PASCAL /MT Compiler 3.2 8080 32K
PASCAL/MT+ w/SPP 5.5 8080 52K Needs 165K/drive
PASCAL /Z Compiler 4.0 8080 56K
Payroll/Cybemetics, Inc. Z80 Needs RM/COBOL
Payroll /Peachtree 07-13-81 8080 48K Needs BASIC-80 4.51
Payroll /Structured Sys 1.0E 8080 60K w/It Works run time pkg.
PEARL SD 3.01 8080 56K W/CBASIC2, Ultrasort II
PLAN80 Financial Package (Z80/8080) 2.2 8080 56K Z80/8080
PLAN80 Demo 1.0
PL/I-80 1.3 8080 48K
PLINK I Linking Loader 3.28 Z80 24K
PLINK-II Linking Loader 1.10A Z80 48K
PMATE 3.02 8080 32K
POSTMASTER Mail List System 3.5 3.5 8080 48K
Professional Time Acctg 3.11a 8080 48K Needs CBASIC2

(continued next page)
Lifelines, Volume II, Number 10 55

VERSION LIST
MR
56K Needs BASIC-80
48K Needs CBASIC 2.07 + , CP/M-80 2.0 +

Needs BASIC-80 4.51
48K Needs CBASIC

48K
56K Needs CBASIC

48K
48K w/Cybemetics CP/M 2
28K Modified for TRS-80 Model-I only!
40K
16K
48K

48K Needs CBASIC
52K Needs CBASIC
48K TRSDOS,MDOS too, needs BASIC-80 5.0

N/A-Superbr'n
For CP/M 1.x

32K Needs Word Processing Program
48K Needs BASIC-80 4.51

Needs BASIC-80 4.2 or above
48K

Product s
Programmer's Apprentice
Property Management Program (AMC) 4.2
Property Management System 07-13-80
Property Manager 1.0
PSORT 1.3
QSORT Sort Program 2.0
Real Estate Acquisition Programs 2.1
Remote 3.01
Residential Prop. Mngemt. Sys. 1.0
RM/COBOL Compiler 1.3C
RAID 5.0.2
RAID w/FPP 5.0.2
RECLAIM Disk Verification Program 2.1
SBASIC 5.4
Scribble 1.3
SELECTOR-III-C2 Data Manager 3.24
SELECTOR-IV 2.17
Shortax 1.2
SID Symbolic Debugger 1.4
SMAL/80 Programming System 3.0
Spellguard 2.0
Standard Tax 1.0
STATPAK 1.2
STIFF UPPER LISP 2.7
STRING BIT FORTRAN Routines 1.02
STRING /80 bit FORTRAN Routines 1.22
STRING /80 bit Source 1.22
SUPER SORT I Sort Package 1.5
SELECT
T/MAKER II 2.5.1
T /MAKER II DEMO 2.4
TEX Text Formatter 2.1
TEXTWRITER-III 3.6
TINY C Interpreter 800102C
TINY C-II Compiler 800201
TRS-80 Customization Disk 1.3C
ULTRASORT II 4.1B
Lifeboat Unlock 1.3
VISAM 2.3p
Wiremaster
Wordindex 3.0
Wordmaster 1.07A
WordStar 3.0
WordStar w/MailMerge 3.0
WordStar Customization Notes 3.0
XASM-05 Cross Assembler 1.05
XASM-09 Cross Assembler 1.07
XASM-51 Cross Assembler 1.09
XASM-F8 Cross Assembler 1.04
XASM-400 Cross Assembler 1.03
XASM-18 Cross Assembler 1.41
XASM-48 Cross Assembler 1.62
XASM-65 Cross Assembler 1.97
XASM-68 Cross Assembler 2.00
XYBASIC Extended Interpreter 2.11
XYBASIC Extended Disk Interpreter 2.11
XYBASIC Extended Compiler 2.0
XYBASIC Extended Romable 2.1
XYBASIC Integer Interpreter 1.7
XYBASIC Integer Compiler 2.0
XYBASIC Integer Romable 1.7
ZAP-80 1.4
Z80 Development Package 3.5
ZDM/ZDMZ Debugger 1 .2 /2 .0
ZDT Z80 Debugger 1.41
ZSID Z80 Debugger 1.4A

N
N

N
8

8

8
Max. record = 4096 bytes

40K
48K Avail, for CDOS
48K
36K
32K

48K
Use w/BASIC-80 5.2

48K
Needs 180K/drive

48K Needs WordStar
40K
48K
48K

48K
48K
48K
48K
48K

Needs 50K/drive
N/A-Magnolia,Superbr'n, mod. CP/M
For N'Star,Apple, IBM 8"
N/A-Superbr'n, mod. CP/M
N/A-Superbr'n, mod. CP/M

+ These products are available in Z80 or 8080, in the following host language:
BASCOM, COBOL-80, FORTRAN-80, PASCAL/M, PASCAL/Z, CIS-
COBOL, CBASIC, PL/I-80, BASIC-80 4.51, and BASIC-80 5.xx.

Lifelines, March 198256

BOY IS THIS
COSTING YOU.

records and entire databases
with a few keystrokes, with
accuracy to 10 places.

Change your data or your
entire database structure
without re-entering all
your data.

And after you’re finished,
you can protect all that
elegant code with our run-
time compiler.

Expand your clientbase
with dBASE II.

It’s really quite basic: time is
money.

And BASIC takes a lot more
time and costs a lot more
money than it should every
time you write a new business
software package.

Especially when you
could speed things up with
dBASE II.

dBASE II is a complete
applications
development package.

With dBASE II, you’ll write programs a lot
faster and a lot more efficiently. You’ll be able to
write more programs for more clients. Even take
on the smaller jobs that were out of the economic
question before. Those nice little foot-in-the-data-
base assignments that grow into bigger and better
bottom lines.

Users tell us they’ve cut the amount of code they
write by up to 80% with dBASE II.

Because dBASE II is the high performance relational
database management system for micros.

Database and file handling operations are done
automatically, so you don’t get involved with sets, lists,
pointers, or even opening and closing of files.

Instead, you write your code in concepts.
And solve your customers’ problems faster and for

a lot less than with BASIC (or FORTRAN, COBOL
or PL/I).

dBASE II uses English-like commands.
dBASE II uses a structured language to put you in

full control of your data handling operations.
It has screen handling facilities for setting up input

and output forms.
It has a built-in query facility, including multi-

key and sub-field searches, so you can DISPLAY
some or all of the data for any conditions you want
to apply.

You can UPDATE, MODIFY and REPLACE entire
databases or individual characters.

CREATE new databases in minutes, or JOIN data-
bases that already exist.

APPEND new data almost instantly, whether the
file has 10 records or tens of thousands.

SORT the data on as many keys as you want. Or
INDEX it instead, then FIND whatever you’re looking
for in seconds, even using floppies.

Organize months worth of data in minutes with the
built-in REPORT. Or control every row and column
on your CRT and your printer, to format input and
output exactly the way you want it.

You can do automatic calculations on fields,

Also available from Lifeboat Associates.

Your competitors know of this offer.
The price of dBASE II is $700 but you can try it

free for 30 days.
Call for our Dealer Plan and OEM run-time package

prices, then take us up on our money-back guarantee.
Send us your check and we’ll send you a copy of
dBASE II that you can exercise on your CP/M®
system any way you want for 30 days.

Then send dBASE II back and we’ll return all of your
money, no questions asked.

During that 30 days, you can find out exactly how
much dBASE II can save you,
and how much more it lets
you do.

But it’s only fair to warn
you: business programmers
don’t go back to BASIC’s.

Ashton-Tate, 9929 Jefferson,
Los Angeles, CA 90230.
(213) 204-5570.

Ashton-late
©Ashton-Tate 1981

®CP/M is a registered trademark of Digital Research.

1651 Third A
venue / N

ew
 Y

ork. N
.Y. 10028

S
econd C

lass P
ostage Paid

At N
ew

 York, N
.Y.

